Below are the titles and abstracts from the most recent articles published in In Vitro Cellular and Developmental Biology – Animal. Click on the title to view the full article at Springerlink.
- Tianxiangdan suppresses foam cell formation by enhancing lipophagy and reduces the progression of atherosclerosison January 14, 2025 at 12:00 am
Abstract The aim of this study is to assess the impact of Tianxiangdan (TXD) on lipophagy in foam cells and its underlying mechanism in treating atherosclerosis, particularly focusing on its efficacy in lowering blood lipids. In vivo, ApoE-/- atherosclerosis mouse models were established for group intervention. Blood lipid levels of the mice were measured, lipid deposition and autophagy levels in atherosclerotic plaques were assessed, and co-localization of lipid droplets and autophagosomes was examined. In vitro, human THP-1 cells were induced into macrophages and then transformed into foam cells using ox-LDL induction. Different intervention groups were established. Total cellular cholesterol (TC), free cholesterol (FC), and autophagy levels were assessed, while the morphology and distribution of lipid droplets and autophagosomes in cells were observed using transmission electron microscopy. Western blot analysis was performed to evaluate the expression levels of […]
- Urolithin B suppresses phenotypic switch in vascular smooth muscle cells induced by PDGF-BB via inhibiting the PI3K-AKT pathwayon January 13, 2025 at 12:00 am
Abstract Atherosclerosis (AS) is a prevalent cardiovascular condition, and the growth and phenotypic switch of vascular smooth muscle cells (VSMCs) play a crucial role in its development. Studies have revealed that the activation of certain transcription factors and signaling pathways can trigger these cellular changes. Consequently, targeting these pathways and pivotal molecules has emerged as a promising strategy for AS treatment. Drugs that can reverse the cellular changes in VSMCs may offer new therapeutic options for AS, marking a significant advancement. While previous research has suggested that urolithin B (Uro B) possesses anti-atherosclerotic properties, its exact mechanism remains to be fully understood, especially the effect of Uro B in VSMCs. This study discovered that Uro B can impede the proliferation and migration of VSMCs prompted by PDGF-BB, as well as their phenotypic changes, indicating that Uro B could potentially prevent AS by inhibiting the […]
- Using cationic liposomes as carriers for long dsRNA to trigger an antiviral response in rainbow trout cell lineson January 9, 2025 at 12:00 am
Abstract Long dsRNA induces the expression of type I interferons (IFNs) and IFN-stimulated genes (ISGs) to establish an antiviral state. When induced prophylactically, this antiviral state can reduce the severity and mortality of viral infections. One of the limiting factors in delivering dsRNA in animal models is the lack of an effective carrier that protects the dsRNA from degradation in the extracellular space. In this study, commercially available cationic liposomes composed of stearylamine, L-α-phosphatidylcholine, and cholesterol were analyzed for their ability to encapsulate and deliver a 621-bp dsRNA sequence. This encapsulated dsRNA was delivered to two Oncorhynchus mykiss cell lines, RTG-2 and RTgill-W1, to activate the IFN pathway and reduce chum salmon reovirus (CSV) infection. EMSA analysis revealed that the liposomes effectively encapsulated 55 and 800 µg/mL doses of dsRNA, remained stable when stored at 4°C and − 20°C, and protected the […]
- Efficacy determination of a disinfectant against channel catfish virus by in vitro and in vivo methodson December 30, 2024 at 12:00 am
Abstract Channel catfish virus (CCV) poses a significant threat to catfish culture. Lack of effective vaccines and antiviral treatments necessitates effective disinfection strategies to mitigate its spread. In vitro trials indicated the virus to be inactivated at high temperatures, but was infectious at 40°C. This study evaluated the efficacy of a commercial disinfectant against CCV using both in vitro and in vivo approaches. In vitro experiments assessed the virucidal activity of the disinfectant against CCV in channel catfish ovary (CCO) cells, while in vivo trials evaluated its effectiveness in reducing viral transmission and mortality among channel and hybrid catfish fingerlings. Results indicated that the disinfectant was effective in inactivating the virus at the tested concentrations and improved the survival of fish exposed to the virus. This study provides critical insights into selecting appropriate disinfection protocols to enhance biosecurity in catfish […]
- Preliminary study on the potential damage of cigarette smoke extract in 3D human chondrocyte cultureon December 28, 2024 at 12:00 am
Abstract Osteoarthritis (OA) is a chronic degenerative disease characterized by the progressive loss of articular cartilage. The role of cigarette smoke (CS) in OA is debated, with some studies suggesting a protective effect while others indicate it may pose a risk. Our preliminary findings suggest a link between smoking in young adults and severe knee OA, though the extent of this contribution is unclear. This study investigates the impact of cigarette smoke extract (CSE) on human chondrocytes. Human chondrocyte cultures were exposed to varying concentrations (0–10%) of CSE for 7 d. We evaluated cell viability, extracellular matrix (ECM) components, metalloproteinase expression and cytokines levels, and antioxidant enzymes (SOD1 and CAT) using calcein staining, immunohistochemistry and ELISA. Oxidative stress (OS) was assessed by measuring hydrogen peroxide (H2O2) and nitric oxide (NO) levels. Results were analyzed using ANOVA with Tukey post hoc tests, and […]
- Expression, prognosis, immunological infiltration, and DNA methylation of members of the SFRP gene family in colorectal cancer: a comparative bioinformatic and experimental analysison December 27, 2024 at 12:00 am
Abstract This study aimed to investigate the expression, prognostic significance, methylation, and immune invasion levels of secreted frizzled-related proteins (SFRP1-5) in colorectal cancer (CRC). Additionally, the relationship between SFRP1/2 methylation and immune infiltration in CRC was explored. The expression of SFRP1-5 was analyzed using several databases, including GEO, TCGA, TIMER, STRING, and GEPIA. Molecular interactions with SFRPs were examined via Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes, and Genomes (KEGG) pathway analyses were conducted using the DAVID database. Methylation levels of SFRP1/2 in CRC were assessed through methylation-specific PCR (MSP) and bisulfite sequencing PCR (BSP) experiments. Apoptosis and proliferation in CRC cells following the knockdown of SFRP1/2 expression were evaluated using flow cytometry and CCK-8 assays. The TISIDB database was used to analyze the relationship between SFRP1/2 methylation […]
- OPA3 inhibits the cGAS-STING pathway mediated by mtDNA stress to promote colorectal cancer progressionon December 26, 2024 at 12:00 am
Abstract Colorectal cancer (CRC) is an extremely harmful malignant tumor. Optic atrophy 3 (OPA3) is highly expressed in multiple tumors, but its action in CRC is still unknown. This research aims to explore the role of OPA3 and its related molecular mechanisms for CRC. Firstly, we overexpressed and knocked down OPA3 to examine its effect on CRC cell (HT29 cell) growth. CRC cell viability, migration, invasion, and levels of proliferation markers and cell cycle-associated proteins were measured. Then, we treated cells with carbonyl cyanide m-chlorophenyl hydrazone (CCCP) to explore mitochondrial dysfunction and mtDNA stress in HT29 cells. Next, we overexpressed cGAS and STING to examine their correlation with OPA3. The results showed that OPA3 overexpression enhanced CRC cell viability, migration, invasion, and the levels of PCNA, Cyclin A2, and Cyclin B1. Knockdown of OPA3 had the opposite effects. Moreover, OPA3 knockdown facilitated mitochondrial dysfunction and […]
- Maxing Yigan formula promotes cartilage regeneration by regulating chondrocyte autophagy in osteoarthritison December 24, 2024 at 12:00 am
Abstract Maxing Yigan formula (MYF) is a traditional Chinese medicine (TCM) prescription used for the treatment of OA for decades in China. However, the mechanism remains unknown. In this study, we developed a MYF-incorporated collagen sponge (MYF@CS) and investigated its cartilage regeneration effect and the underlying mechanism. In vitro experiments revealed that MYF significantly promoted cell viability, proliferation, and autophagy of OA chondrocytes. Furthermore, MYF@CS significantly enhanced chondrogenesis and cartilage regeneration, as assessed by macroscopic observation, the International Cartilage Repair Society (ICRS) visual histological score, and histological examination. Our findings suggest that MYF@CS could represent a significant therapeutic strategy for the treatment of OA.
- Chlorogenic acid suppresses the expression of matrix metalloproteinase-7 and cell invasiveness to almost the same extent as isofraxidin in human colorectal cancer cellson December 18, 2024 at 12:00 am
Abstract The expression of matrix metalloproteinase (MMP)-7 is reported to be correlated with invasion and metastasis of colorectal cancer (CRC). Therefore, the inhibition of MMP-7 would be beneficial for the suppression or prevention of CRC cell invasion and metastasis. The stem bark of Acanthopanax senticosus, a widely used medicinal herb, contains isofraxidin (IF) and chlorogenic acid (CGA) as major components. Previously we reported that IF suppressed the expression of MMP-7 and cell invasion in human hepatoma cells. In this study, we investigated the effects of CGA on cell invasion, MMP-7 mRNA expression and the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and compared it with those of IF in human CRC cells (HT-29). We found that CGA significantly suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cell invasion, MMP-7 expression and the expression of activated form of MMP-7 to almost the same extent as IF. Meanwhile, we also […]
- Development and characterization of polyvinyl alcohol/gelatin/chitosan hydrogel for tissue engineering and wound healing applications using a fish cell line modelon December 13, 2024 at 12:00 am
Abstract Chitosan-based hydrogels have gained considerable attention in biomedical research due to their inherent biocompatibility, biodegradability, and non-toxicity. When combined with polyvinyl alcohol (PVA), the resulting hydrogels exhibit superior mechanical strength, elasticity, and swelling capacity, making them highly suitable for a range of applications, including wound healing, tissue engineering, and controlled drug delivery. In this study, we synthesized and characterized a novel PVA/gelatin/chitosan (PVA/G/C) hydrogel composite using a series of analytical techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis (EDAX). The morphological, structural, and compositional analyses confirmed the successful formation of a homogenous, porous network conducive to cell proliferation and nutrient diffusion. In this study, polyvinyl […]
- MiR-146a-5p downregulated TRAF6/NF-κB p65 pathway to attenuate the injury of HT-22 cells induced by oxygen–glucose deprivation/reoxygenationon December 7, 2024 at 12:00 am
Abstract MicroRNA-146a-5p (miR-146a-5p) actively participates in the process of cerebral ischemia–reperfusion (CI/R) injury. Dysregulation of the tumor necrosis factor receptor-associated factor 6 (TRAF6)/nuclear factor kappa-B (NF-κB) p65 axis is closely associated with inflammatory response. This study aimed to investigate the potential involvement of miR-146a-5p and TRAF6/NF-κB p65 in mediating CI/R progression in vitro. HT-22 cells were challenged with oxygen–glucose deprivation/reoxygenation (OGD/R) to simulate CI/R in vitro. HT-22 cells were transfected with miR-146a-5p mimics or TRAF6 overexpression constructs. The impact of miR-146a-5p on apoptosis, inflammation, and TRAF6/NF-κB p65 activation were investigated. OGD/R inhibited HT-22 cell viability, induced apoptosis, reduced miR-146a-5p levels and activated the TRAF6/NF-κB p65 pathway. MiR-146a-5p mimics reduced pro-inflammatory factor release, limited apoptosis-related protein expression, and […]
- Correction: The adaptation of bovine embryonic stem cells to the changes of feeder layerson December 7, 2024 at 12:00 am
- RO4929097 inhibits NICD3 to alleviate pulmonary hypertension via blocking Notch3/HIF-2α/FoxM1 signaling pathwayon December 2, 2024 at 12:00 am
Abstract Pulmonary hypertension (PH) is a condition in which the smooth muscle cells (SMCs) in the pulmonary arteries multiply excessively, causing the arteries to narrow. This can ultimately result in right heart failure and premature death. Notch3 is an important factor involved in pulmonary vascular remodeling in PH. RO4929097, as a γ-secretase inhibitor that inhibits Notch3 signaling pathway, may be a potential drug for the treatment of PH, but its feasibility and related mechanism of action need to be further investigated. In vitro modeling by hypoxic incubation of human pulmonary artery SMCs (HPASMCs). RO4929097 and plasmids including overexpression-NICD3 (oe-NICD3) and NICD3 small interfering RNA (siRNA) were used to alter the expression of NICD3, and HIF-2α inhibitor PT-2385 was used to alter the expression of HIF-2α. Western blot, EdU incorporation assay was used to investigate the alteration of NICD3, HIF-2α, FoxM1 protein expression, and cell […]
- The effects of carbon-ion beam irradiation on three-dimensional in vitro models of normal oral mucosa and oral cancer: development of a novel tool to evaluate cancer therapyon December 1, 2024 at 12:00 am
Abstract Given that the original tumor microenvironment of oral cancer cannot be reproduced, predicting the therapeutic effects of irradiation using monolayer cultures and animal models of ectopic tumors is challenging. Unique properties of carbon-ion irradiation (CIR) characterized by the Bragg peak exert therapeutic effects on tumors and prevent adverse events in surrounding normal tissues. However, the underlying mechanism remains unclear. The biological effects of CIR were evaluated on three-dimensional (3D) in vitro models of normal oral mucosa (NOMM) and oral cancer (OCM3 and OCM4) consisting of HSC-3 and HSC-4 cells. A single 10- or 20-Gy dose of CIR was delivered to NOMM, OCM3, and OCM4 models. Histopathological and histomorphometric analyses and labeling indices for Ki-67, γH2AX, and TUNEL were examined after CIR. The concentrations of high mobility group box 1 (HMGB1) were measured. NOMM exhibited epithelial thinning after CIR, which could be caused by […]
- Tumor endothelial cell-derived Sfrp1 supports the maintenance of cancer stem cells via Wnt signalingon December 1, 2024 at 12:00 am
Abstract Cancer stem cells (CSCs), which are critical targets for cancer therapy as they are involved in drug resistance to anticancer drugs, and metastasis, are maintained by angiocrine factors produced by particular niches that form within tumor tissue. Secreted frizzled-related protein 1 (Sfrp1) is an extracellular protein that modulates Wnt signaling. However, the cells that produce Sfrp1 in the tumor environment and its function remain unclear. We aimed to elucidate angiocrine factors related to CSC maintenance, focusing on Sfrp1. Although Sfrp1 is a Wnt pathway-related factor, its impact on tumor tissues remains unknown. We investigated the localization of Sfrp1 in tumors and found that it is expressed in some tumor vessels. Analysis of mice lacking Sfrp1 showed that tumor growth was suppressed in Sfrp1-deficient tumor tissues. Flow cytometry analysis indicated that CSCs were maintained in the early tumor growth phase in the Sfrp1 knockout (KO) mouse model of […]
- Spatiotemporal distribution of PTEN before directed cell migration in monolayerson December 1, 2024 at 12:00 am
Abstract The intracellular distribution of phosphatase and tensin homolog (PTEN) is closely related to directed cell migration. In single cells, PTEN accumulates at the rear of the cell before and during directed migration; however, the spatiotemporal distribution of PTEN in confluent cell monolayers, particularly before directed migration, remains unclear. In this study, we wounded a cell in confluent fetal rat skin keratinocytes (FRSKs) and examined the dynamics of PTEN in the cells adjacent to the wounded cell. In contrast to single-cell migration, we found that PTEN translocated to the nucleus before the beginning of directed migration. This nuclear translocation of PTEN did not occur in disconnected cells, and it was also suppressed by importin-β inhibitor and actin inhibitor. When the nuclear localization of PTEN was inhibited by an importin-β inhibitor, cell elongation in the direction of migration was also significantly inhibited. Our results indicate […]
- Pharmacoproteogenomic approach identifies on-target kinase inhibitors for cancer drug repositioningon December 1, 2024 at 12:00 am
Abstract Drug repositioning of approved drugs offers advantages over de novo drug development for a rare type of cancer. To efficiently identify on-target drugs from clinically successful kinase inhibitors in cancer drug repositioning, drug screening and molecular profiling of cell lines are essential to exclude off-targets. We developed a pharmacoproteogenomic approach to identify on-target kinase inhibitors, combining molecular profiling of genomic features and kinase activity, and drug screening of patient-derived cell lines. This study examined eight patient-derived giant cell tumor of the bone (GCTB) cell lines, all of which harbored a signature mutation of H3-3A but otherwise without recurrent copy number variants and mutations. Kinase activity profiles of 100 tyrosine kinases with a three-dimensional substrate peptide array revealed that nine kinases were highly activated. Pharmacological screening of 60 clinically used kinase inhibitors found that nine […]
- Enhanced design of pCMViR-TSC plasmid vector for sustainably high cargo gene expression in mammalian cellson December 1, 2024 at 12:00 am
Abstract The first-generation pCMViR-TSC, implemented through the promoter sandwich rule, yields 10- to 100-fold higher gene expression than the standard plasmid used with the CMV (cytomegalovirus) or CAG promoter. However, the vector’s shortcomings limit its utility to transient expression only, as it is not suitable for establishing stable transformants in mammalian cells. To overcome this weakness, we here introduce the improved plasmid vector pSAKA-4B, derived from pCMViR-TSC as a second-generation chromosome-insertable vector. This vector facilitates the linear entry of the expression unit into the TTAA site of DNA universally with transposase assistance. The vector is helpful for the indefinite expression of our target gene. The new vector system is proven here to be efficient in establishing stable transformants with a high likelihood of positive clones that exhibit significantly elevated expression levels of the delivered foreign gene. This system, […]
- 2024 Special Reviewers Thank Youon December 1, 2024 at 12:00 am
- Correction: S100A11 is involved in the progression of colorectal cancer through the desmosome-catenin-TCF signaling pathwayon December 1, 2024 at 12:00 am