Recent Articles

Below are the titles and abstracts from the most recent articles published in In Vitro Cellular and Developmental Biology – Animal. Click on the title to view the full article at Springerlink.

 

  • Biological activities of a newly synthesized pyrazoline derivative 4-(3-(4-bromophenyl)-5-(2,4-dimethoxyphenyl)-4,5-dihydro-1 H -pyrazol-1-yl) benzenesulfonamide (B4) compound on rainbow trout alevins, Oncorhynchus mykiss
    on January 20, 2021 at 12:00 am
  • Characterization of a bovine intestinal myofibroblast cell line and stimulation using phytoglycogen-based nanoparticles bound to inosine monophosphate
    on January 20, 2021 at 12:00 am

    Abstract The goal of the present study was to characterize a novel bovine intestinal myofibroblast (BT-IMF) cell line isolated from a fetal bovine intestine. This cell type is of importance as intestinal myofibroblasts play a key role in controlling intestinal epithelial cell proliferation, intestinal regulation, wound healing, epithelial cell turnover, and structural support. The present work demonstrates that BT-IMF cells could be successfully cryopreserved and thawed and cultured past 25 passages. Immunocytochemical staining of the BT-IMF cell line was positive for vimentin and smooth muscle actin (α-SMA) and negative for pancytokeratin, suggesting that the cells are myofibroblastic in type. Growth kinetic experiments demonstrate that hydrocortisone negatively impacts BT-IMF growth and non-essential amino acids enhance its proliferation. Inosine monophosphate (IMP) is a dietary nucleotide and is essential for supporting animal health. Stimulation with IMP bound […]

  • 2020 Special Reviewers Thank You
    on January 20, 2021 at 12:00 am
  • In vitro three-dimensional organotypic culture models of the oral mucosa
    on January 14, 2021 at 12:00 am

    Abstract Three-dimensional, organotypic models of the oral mucosa have been developed to study a wide variety of phenomena occurring in the oral cavity. Although a number of models have been developed in academic research labs, only a few models have been commercialized. Models from academic groups offer a broader range of phenotypes while the commercial models are more focused on the oral and gingival mucosa. The commercialized models are manufactured under highly controlled conditions and meet the requirements of quality standards, which leads to high levels of reproducibility. These in vitro models have been used to evaluate the irritancy of oral care products such as toothpastes, mouthwashes, and mucoadhesives. The effects of cigarette smoke on oral cavity tissues have been studied and compared to those of e-cigarettes. Oral tissue models have facilitated investigation of the mechanisms of oral mucositis and oral candidiasis and have been used to examine […]

  • Dexamethasone enhances CD163 expression in porcine IPKM immortalized macrophages
    on January 14, 2021 at 12:00 am

    Abstract In our previous study, we established a unique porcine macrophage cell line, immortalized porcine kidney-derived macrophages (IPKM). The purpose of the present study was to further elucidate the characteristics of IPKM. CD163 is a scavenger receptor for the hemoglobin-haptoglobin complex and is used as a phenotypic marker of anti-inflammatory M2 macrophages. The expression of CD163 is enhanced by dexamethasone (DEX), a potent steroidal anti-inflammatory drug, in human and rodent macrophages in vitro. Therefore, we investigated the effects of DEX on CD163 expression in porcine IPKM. Treatment with DEX markedly enhanced CD163 expression in the IPKM. In addition, we found that SB203580, a selective inhibitor of p38 mitogen-activated protein kinase (MAPK), blocked the effects of DEX, suggesting that the p38 MAPK signaling pathway is involved in the regulation of the DEX-induced enhancement of CD163 expression. Since CD163 is considered to be a putative receptor […]

  • Advances in 3D neuronal microphysiological systems: towards a functional nervous system on a chip
    on January 12, 2021 at 12:00 am

    Abstract Microphysiological systems (MPS) designed to study the complexities of the peripheral and central nervous systems have made marked improvements over the years and have allowed researchers to assess in two and three dimensions the functional interconnectivity of neuronal tissues. The recent generation of brain organoids has further propelled the field into the nascent recapitulation of structural, functional, and effective connectivities which are found within the native human nervous system. Herein, we will review advances in culture methodologies, focused especially on those of human tissues, which seek to bridge the gap from 2D cultures to hierarchical and defined 3D MPS with the end goal of developing a robust nervous system-on-a-chip platform. These advances have far-reaching implications within basic science, pharmaceutical development, and translational medicine disciplines.

  • Timing of spermatogonial stem cell transplantation affects the spermatogenic recovery outcome in mice
    on January 8, 2021 at 12:00 am

    Abstract Spermatogonial stem cell transplantation (SSCT) is a strategy that has demonstrated to be feasible to restore spermatogenesis in animal models when it is performed shortly after the gonadotoxic onset to destroy their endogenous germ cells. However, in the case of boys subjected to fertility preservation, future transplantations will be performed with a delay of many years. In order to study how timing of SSCT affects donor-derived spermatogenic recovery in mice, we compared the percentage of spermatogenic tubule cross-sections within testes of 59 C57BL/6NCrl mice distributed in 6 groups: group 1, untreated mice controls (n = 9); group 2, mice that received a single dose of busulfan 40 mg/kg (n = 10); group 3, mice that received two additional doses of busulfan 10 mg/kg every 5 weeks (n = 10); group 4 (SSCT-A), mice subjected to a standard SSCT performed 5 weeks after a single injection of busulfan 40 mg/kg (n = 10); group 5 (SSCT-B), mice […]

  • Hypoxia-reoxygenation induces macrophage polarization and causes the release of exosomal miR-29a to mediate cardiomyocyte pyroptosis
    on January 8, 2021 at 12:00 am

    Abstract To investigate the mechanism by which hypoxia-reoxygenation (HR) mediates macrophage polarization to the M1 phenotype and then mediates cardiomyocyte (CM) pyroptosis through exosome release. Mouse bone marrow macrophages and CMs were cultured in vitro under hypoxia for 12 h and reoxygenation for 6 h to establish an HR cell model. qPCR was used to detect the M1 or M2 macrophage markers IL-1β, TNF-α, MR, and Arg, and a macrophage and CM coculture system was then established. Macrophages were transfected with an exosome-CD63-red fluorescent protein (RFP) lentivirus, allowing secretion of exosomes expressing RFP, and GW4869 was used to inhibit exosome release by macrophages. qPCR detected miR-29 expression in macrophage-derived exosomes, and macrophages were transfected with miR-29a inhibitors to obtain exosomes with low miR-29a expression (siR-exos). Pyroptosis indicators were detected by Western blot and ELISA. Importantly, LPS induced bone marrow […]

  • Bacillus thuringiensis Cry1Ac toxin and protoxin do not provoke acute or chronic cytotoxicity on macrophages and leukocytes
    on January 7, 2021 at 12:00 am

    Abstract The bioinsecticidal Cry1Ac proteins (protoxin and toxin) are potent immunogens that can activate macrophages by inducing upregulation of costimulatory molecules, pro-inflammatory cytokines, and mitogen-activated protein kinase (MAPK) signaling pathways. Besides, by the oral route, Cry1Ac toxin is mildly allergenic and induces intestinal lymphoid hyperplasia in mice. Given the potential utility of Cry1Ac protoxin as an adjuvant, as well as the human consumption of Cry1Ac toxin in transgenic crops, it is necessary to more deeply evaluate the toxicological potential of these proteins in mammalian immune cells. Here, were used in vitro evaluations in leukocyte and macrophage cell lines to test the potential toxicity of various doses of Cry1Ac proteins, by means of Alamar Blue, MTT, Annexin V, and JC1 assays. Our results indicated that neither Cry1Ac protoxin nor toxin elicited acute toxic effects, after monitoring the cell activity for 4, 8, 10, and 24 h of […]

  • Immortalization of primary sheep embryo kidney cells
    on January 7, 2021 at 12:00 am

    Abstract Sheep primary epithelial cells are short-lived in cell culture systems. For long-term in vitro studies, primary cells need to be immortalized. This study aims to establish and characterize T immortalized sheep embryo kidney cells (TISEKC). In this study, we used fetal lamb kidneys to derive primary cultures of epithelial cells. We subsequently immortalized these cells using the large T SV40 antigen to generate crude TISEKC and isolate TISEKC clones. Among numerous clones of immortalized cells, the selected TISEKC-5 maintained active division and cell growth over 20 passages but lacked expression of the oncogenic large T SV40 antigen. Morphologically, TISEKC-5 maintained their epithelial aspect similar to the parental primary epithelial cells. However, their growth properties showed quite different patterns. Crude TISEKC, as well as the clones of TISEKC proliferated highly in culture compared to the parental primary cells. In the early passages, immortalized […]

  • Tracking the movement of individual avian neural crest cells in vitro
    on January 7, 2021 at 12:00 am

    Abstract The origin, migratory pathways and adult derivatives of neural crest cells (NCCs) are well known. However, less is known about how these cells migrate. In this study, in a laboratory based in a low-resource setting, a hanging drop culture assay was utilised to study the movement of individual avian trunk neural crest cells. Mode of migration by means of lamellipodia and filopodia was studied in live cell cultures with a laser scanning confocal microscope and Airyscan module. Both distance migrated and speed of migration were calculated. NCCs migrated in a chain soon after emerging from the explanted neural tube, but were more dispersed and had random movements when they reached the periphery of the culture. While the distances travelled by these NCCs were less and the cells were slower on gelatine than on other extracellular matrices reported in the literature, the assay afforded detailed observation of actin filament distribution and cytoplasmic […]

  • Organoid culture to study epithelial cell differentiation and barrier formation in the colon: bridging the gap between monolayer cell culture and human subject research
    on January 5, 2021 at 12:00 am

    Abstract Organoid culture provides a powerful technology that can bridge the gap between monolayer cell culture on the one hand and whole animal or human subject research on the other. Tissues from many different organs from multiple species, including human, have already been successfully adapted to organoid growth. While optimal culture conditions have not yet been established for all tissue types, it seems that most tissues will, ultimately, be amenable to this type of culture. The colon is one of the tissues in which organoid culture was first established as a technology and which has been most successfully employed. The ready availability of histologically normal tissue as well as both premalignant and malignant tissue (often from the same individual) makes this possible. While individual tumors are highly variable relative to one another in organoid culture, a high degree of genotypic consistency exists between the tumor tissue and the histologically normal […]

  • Effect of acetate, β-hydroxybutyrate and their interaction on lipogenic gene expression, triglyceride contents and lipid droplet formation in dairy cow mammary epithelial cells
    on January 5, 2021 at 12:00 am

    Abstract The purpose of this study was to assess the effects of acetate and β-hydroxybutyrate alone or in combination on lipogenic genes and their associated regulatory proteins in dairy cow mammary epithelial cells (DCMEC) using quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blotting, lipid droplet staining and a triglyceride content detection kit, to determine whether SCFA are related to milk fat synthesis regulation in DCMEC. Our experiment shows that addition of different concentrations of acetate, β-hydroxybutyrate and their combinations to DCMEC increase in relative mRNA abundance of lipogenic genes and key transcription factors suggest an increase in lipogenic capacity, which is supported by an increased in cytosolic triglyceride content. Similarly, the protein expression level of acetyl-coenzyme A carboxylase (ACACA), fatty acid synthase (FASN) and sterol-coenzyme desaturase-1 (SCD1) genes and the transcription factor sterol […]

  • Xian-Ling-Gu-Bao protects osteoporosis through promoting osteoblast differentiation by targeting miR-100-5p/KDM6B/RUNX2 axis
    on January 4, 2021 at 12:00 am
  • Effect of incubation temperature on lactogenic function of goat milk-derived mammary epithelial cells
    on December 1, 2020 at 12:00 am

    Abstract In general, goat mammary epithelial cells (MECs) are cultured in vitro under 37 °C. We demonstrated previously that goat MECs differentiate under 37 °C although their body temperature is approximately 39 °C. This study aimed to investigate the influence of 39 °C on lactogenic differentiation of goat milk-derived MECs. The results revealed that HSP70 gene was significantly elevated at 1 h after an exposure to 39 °C but declined at 48 h thereafter. Oxidative stress status was not significantly affected by 39 °C. Expressions of CSN2, β-GALT1, α-LA, and Akt genes tended to increase after the differentiation under 39 °C. Secretion of lactose under 39 °C was not significantly lower than 37 °C. In conclusion, incubation temperature at 39 °C does not dramatically affect lactogenic function of goat milk-derived MECs.

  • Secreted protein of Ly6 domain 1 enhanced bovine trophoblastic cell migration activity
    on December 1, 2020 at 12:00 am
  • MiR-367 alleviates inflammatory injury of microglia by promoting M2 polarization via targeting CEBPA
    on December 1, 2020 at 12:00 am

    Abstract MiR-367 was reported to regulate inflammatory response of microglia. CCAAT/enhancer-binding protein α (C/EBPA) could mediate microglia polarization. In this study, we explored the possible roles of miR-367 and CEBPA in intracerebral hemorrhage (ICH). ICH and normal specimens were obtained from the tissue adjacent to and distant from hematoma of ICH patients, respectively. Microglia were isolated and identified by immunofluorescence. The isolated microglia were treated with erythrocyte lysate and randomly divided into 8 groups using different transfection reagents. The transfection efficiency of miR-367 was determined by qRT-PCR. The expressions of M1 and M2 microglia markers were detected by Western blotting. The relationship between CEBPA and miR-367 was confirmed by dual luciferase reporter system. Flow cytometry was performed to determine the level of apoptosis in the cells transfected with miR-367 and CEBPA in erythrocyte lysate–treated microglia. […]

  • Isolation, establishment and characterization of new insect cell line derived from midgut of rice weevil, Sitophilus oryzae
    on December 1, 2020 at 12:00 am
  • Evaluation of miR-302 promoter activity in transgenic mice and pluripotent stem cell lines
    on December 1, 2020 at 12:00 am

    Abstract Some miRNAs, including the miR-302 cluster, are critical regulators of the stemness state of embryonic stem cells and cell fate patterning. In this study, we evaluated the activity of the miR-302 core promotor in mice and human pluripotent stem cells, somatic tissue derivatives, and generated transgenic mice expressing EGFP under a miR-302 promoter. The expression of EGFP under the control of the miR-302 promotor was examined in the cell lines and somatic tissues of transgenic mice, transgenic blastocysts, and embryonic stem cells derived from transgenic blastocysts. Our results showed that the miR-302 promoter is highly expressed in the mouse and human pluripotent cells, weakly expressed in the somatic tissue derivatives, is highly expressed in both blastocysts and the first passages of transgenic embryonic stem cells, and lowly expressed in the somatic tissues of transgenic mice. It can be concluded that different temporal and spatial gene expression […]

  • Establishment and biological characteristics of fibroblast cell lines obtained from wild corsac fox
    on December 1, 2020 at 12:00 am

Policy | About SIVB | Privacy Policy | Contact Us | Site Map
Society for In Vitro Biology 514 Daniels St., Suite 411 Raleigh, NC 27605 Phone: (910) 755-5431 Fax: (910) 755-5432
© 2016. All Rights Reserved.

Site created by Satori Digital Marketing original theme Frontier Theme.
Frontier Theme