Recent Articles

Below are the titles and abstracts from the most recent articles published in In Vitro Cellular and Developmental Biology – Animal. Click on the title to view the full article at Springerlink.

 

  • The N-end rule pathway enzyme Naa10 supports epiblast specification in mouse embryonic stem cells by modulating FGF/MAPK
    on April 16, 2019 at 12:00 am

    Abstract N-terminal acetylation (Nt-acetylation) refers to the acetylation of the free α-amino group at the N-terminus of a polypeptide. While the effects of Nt-acetylation are multifaceted, its most known function is in the acetylation-dependent N-end rule protein degradation pathway (Ac/N-end rule pathway), where Nt-acetylation is recognized as a degron by designated E3 ligases, eventually leading to target degradation by the ubiquitin-proteasome system. Naa10 is the catalytic subunit of the major Nt-acetylation enzyme NatA, which Nt-acetylates proteins whose second amino acid has a small side chain. In humans, NAA10 is the responsible mutated gene in Ogden syndrome and is thought to play important roles in development. However, it is unclear how the Ac/N-end rule pathway affects the differentiation ability of mouse embryonic stem cells (mESCs). We hypothesized that the balance of pluripotency factors may be maintained by the Ac/N-end rule pathway. Thus, we […]

  • Efficacy of mechanical vibration in regulating mesenchymal stem cells gene expression
    on April 15, 2019 at 12:00 am

    Abstract This study aimed at investigating the expression of osteoblast and chondrocyte-related genes in mesenchymal stem cells (MSCs), derived from rabbit adipose tissue, under mechanical vibration. The cells were placed securely on a vibrator’s platform and subjected to 300 Hz of sinusoidal vibration, with a maximum amplitude of 10 μm, for 45 min per day, and for 14 consequent days, in the absence of biochemical reagents. The negative control group was placed in the conventional culture medium with no mechanical loading. The expression of osteoblast and chondrocyte-related genes was investigated using real-time polymerase chain reaction (real-time PCR). In addition, F-actin fiber structure and alignment with the help of actin filament fluorescence staining were evaluated, and the level of metabolic activity of MSCs was determined by the methyl thiazolyl tetrazolium assay. The real-time PCR study showed a significant increase of bone gene […]

  • HSP90 inhibitor DPB induces autophagy and more effectively apoptosis in A549 cells combined with autophagy inhibitors
    on April 15, 2019 at 12:00 am

    Abstract In our previous study, we proved that a novel Heat shock protein 90 (HSP90) inhibitor 4-(3-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl) benzoic acid (DPB) could inhibit A549 lung cancer cell growth via inducing apoptosis. However, whether DPB affects autophagy is still unknown. Here, we investigated the effects of DPB on autophagy and the improved anti-cancer activity in A549 lung cancer cells. Aggregation of LC3-II was observed using laser scanning confocal microscopy in GFP-LC3 stably transfected U87 cells. Autophagy and apoptosis-related protein levels were examined by Western blot analysis. It is suggested that treatment with DPB (5–20 μmol/L) induced mTOR-independent autophagy in dose- and time-dependent manners. Pre-treatment A549 cells with autophagy inhibitor 3-methyladenine (3-MA, 5 mmol/L) enhanced DPB-induced apoptosis. And, DPB inhibited A549 cell growth more effectively in combination with […]

  • A miR-511-binding site SNP in the 3′UTR of IGF-1 gene is associated with proliferation and apoptosis of PK-15 cells
    on April 3, 2019 at 12:00 am

    Abstract Insulin-like growth factor-1 (IGF-1) is a functional candidate gene for pig growth and development due to its crucial role in the growth axis of growth hormone-IGF-1. Considering that the 3′ untranslated region (3′UTR) of gene may affect its expression, we analyzed the effect of a single-nucleotide polymorphism (SNP) (rs34142920, c.674C > T) on gene expression, cell proliferation, and apoptosis and the possible related molecular mechanisms in PK-15 cells. The SNP was found in the 3′UTR of IGF-1 in Bama Xiang pig in previous investigations. Results showed that the SNP was located at the target site binding to microRNA (miR-511). The 3′UTR of IGF-1 gene with C allele significantly downregulated the expression of IGF-1 gene compared with that of the gene with T allele by luciferase assay. miR-511 was transfected into porcine kidney cell line (PK-15 cells) to reveal its effects on cells and whether or not it targets […]

  • Tetrandrine isolated from Cyclea peltata induces cytotoxicity and apoptosis through ROS and caspase pathways in breast and pancreatic cancer cells
    on April 3, 2019 at 12:00 am

    Abstract Tetrandrine is a bisbenzylisoquinoline alkaloid known to exhibit anticancer activity against different cancers. In the present study, the cytotoxic effect of tetrandrine isolated from Cyclea peltata on pancreatic (PANC-1) and breast (MDA-MB-231) cancer cells was evaluated in vitro with an attempt to understand the role of tetrandrine on the generation of reactive oxygen species (ROS) and caspase activation. Results demonstrate the dose- and time-dependant cytotoxic effect of tetradrine on both MDA-MB-231 and PANC-1 cells with IC50 values ranging between 51 and 54 μM and 22 and 27 μM for 24 h and 48 h of incubation respectively. In addition, treatment of MDA-MB-231 and PANC-1 cells with tetrandrine showed the shrunken cytoplasm and damaged cell membrane in a dose- and time-dependant manner under the microscope. Also, tetrandrine treatment revealed an elevated levels of reactive oxygen species and increased activities of caspase-8, -9 […]

  • Use of embryonic fibroblasts associated with graphene quantum dots for burn wound healing in Wistar rats
    on April 1, 2019 at 12:00 am

    Abstract Burn is one of the common wounds in the world and using modern methods such as cell therapy can be considered as an effective strategy in the treatment of these wounds. The aim of this study is investigating the effects of using graphene quantum dots (GQDs) associated fibroblasts on treating third-degree burns in Wistar rats. In this experiment, cells were obtained by isolating fibroblasts from 13-day embryos of Wistar rats. MTT assay was performed to determine the dose of nanoparticle and cell tracker. For this study, 40 Wistar rats were burned and randomly divided into two groups of control and treatment. The treatment group was divided into three groups of daily injection of GQD nanoparticle with a concentration of 100 μg/ml, cell therapy, and cell therapy + GQDs. On days 20 and 40, skin tissue sections were prepared and stained with hematoxylin–eosin (H&E) and trichrome Masson for microscopic examination. Macroscopic and microscopic […]

  • Copper-induced non-monotonic dose response in Caco-2 cells
    on April 1, 2019 at 12:00 am

    Abstract Copper is an essential dietary micronutrient in humans for proper cell function; however, in excess, it is toxic. The human cell line Caco-2 is popular as an in vitro model for intestinal absorption and toxicology. This study investigated the response of exponentially growing Caco-2 cells to prolonged copper exposure (120 h). An unexpected non-monotonic dose-response profile was observed in Caco-2 cells. Exposure to media supplemented with 3.125 μM CuSO4 resulted in decreased cell yield vs. untreated. However, toxicity was progressively reduced from 90% at 3.125 μM to 60% at 25 μM. This effect was documented between 48 and 120 h continuous exposure (p < 0.05). This triphasic toxicity curve was observed to be specific to copper in Caco-2 cells, as iron, manganese and zinc displayed monotonic dose-response profiles. Two inorganic copper forms, copper sulphate and copper chloride, were shown to conserve the […]

  • Amniotic membrane as novel scaffold for human iPSC-derived cardiomyogenesis
    on April 1, 2019 at 12:00 am

    Abstract Recent approaches of using decellularized organ matrices for cardiac tissue engineering prompted us to culture human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) on the human amniotic membrane (hAM). Since hAM has been used lately to patch diseased hearts in patients and has shown anti-inflammatory and anti-fibrotic benefits, it qualifies as a cardiac compatible and clinically relevant heart tissue scaffold. The aim of this study was to test the ability of the hAM to support attachment, differentiation, and maturation of hiPSC-derived CMs in vitro. hAMs were prepared from term placenta. An in-house generated hiPSC line was used for CM derivation. hiPSC-derived cardiac progenitors were cultured on the surface of cryopreserved hAMs and in the presence of cytokines promoting cardiac differentiation. CMs grown on hAM and popular basement membrane matrix (BMM) Matrigel™ were compared for the following aspects of cardiac development: […]

  • A1CF-Axin2 signal axis regulates apoptosis and migration in Wilms tumor-derived cells through Wnt/β-catenin pathway
    on April 1, 2019 at 12:00 am

    Abstract A1CF, a complementary factor of APOBEC-1, is involved in many cellular processes for its mRNA editing role, such as cell proliferation, apoptosis, and migration. Here, we explored the regulatory function of A1CF in Wilms tumor-derived cells. Quantitative real-time PCR was performed to detect the mRNA level of A1CF, Axin2, β-Catenin, CCND1 or NKD1 in A1CF-depleted or A1CF-overexpression G401 cells. Western bolt was used to analyze the expression of A1CF, Axin2, and β-catenin protein. The cell apoptosis and migration ability were determined using flow cytometry assay or wound healing, respectively. Our study demonstrated that overexpression of A1CF, Axin2 was upregulated and knockdown of A1CF decreased Axin2 expression at mRNA and protein levels in G401 cells. Besides, knockdown of A1CF further upregulated β-catenin, the classical regulator of Wnt signal pathway, and increased CCND1 and NKD1, the target genes of Wnt/β-catenin. […]

  • Repression of insulin gene transcription by indirect genomic signaling via the estrogen receptor in pancreatic beta cells
    on April 1, 2019 at 12:00 am

    Abstract The mechanism whereby 17β-estradiol (E2) mediates insulin gene transcription has not been fully elucidated. In this study, exposure of hamster insulinoma (HIT-T15) cells to 5 × 10−9 to 1 × 10−7 M E2 led to a concentration-dependent decrease of insulin mRNA levels. Transient expression of the estrogen receptor (ER) in HIT-T15 cells revealed that estrogen receptor α (ERα) repressed transcription of the rat insulin II promoter in both ligand-dependent and ligand-independent manners. The N-terminal A/B domain of ERα was not required for either activity. However, the repression was absent with mutated ER lacking the DNA-binding domain. Moreover, introducing mutations in the D-box and P-box of the zinc finger of ER (C227S, C202L) also abolished the repression. Deletion of the insulin promoter region revealed that nucleotide positions − 238 to − 144 (relative […]

  • miR-338-3p regulates osteoclastogenesis via targeting IKKβ gene
    on April 1, 2019 at 12:00 am

    Abstract This study determined the effects of miR-338-3p on osteoclast (OC) differentiation and activation. The change levels of miR-338-3p in differentiated OCs were investigated by microRNA microarray assay and quantitative real-time PCR analysis. The effects of miR-338-3p on the differentiation and activation of OCs were determined by tartrate-resistant acid phosphatase staining resorption activity assay and Western blot. Target genes of miR-338-3p were identified by target gene prediction and dual-luciferase reporter gene detection assay as well as Western blot. Results showed that miR-338-3p was markedly downregulated in differentiated OCs. miR-338-3p could inhibit the formation and absorption activity of OCs. Western blot showed that miR-338-3p could influence the change levels of OC differentiation–related proteins. Dual-luciferase reporter gene detection assay and Western blot both showed that miR-338-3p directly targeted IKKβ gene. In […]

  • Transplantation of umbilical cord–derived mesenchymal stem cells on a collagen scaffold improves ovarian function in a premature ovarian failure model of mice
    on April 1, 2019 at 12:00 am

    Abstract Premature ovarian failure (POF) is a refractory disease; one of the most important goals of treatment is to improve fertility. In the study, collagen scaffold loaded with human umbilical cord–derived mesenchymal stem cells (collagen/UC-MSCs) transplantation in POF mice preserved ovarian function, as supported by increased estrogen (E2) and anti-Mullerian hormone (AMH) levels, increased ovarian volume, and an increased number of antral follicles. Immunohistochemistry results of Ki67 indicated transplantation of collagen/UC-MSCs promoted granulosa cell proliferation, which is crucial to oocyte maturation and follicular development. Additionally, transplantation of collagen/UC-MSCs significantly promoted ovarian angiogenesis with the increased expression of CD31. In general, collagen/UC-MSCs transplantation probably is an effective therapeutic strategy of POF. […]

  • Simulated microgravity inhibits the viability and migration of glioma via FAK/RhoA/Rock and FAK/Nek2 signaling
    on April 1, 2019 at 12:00 am

    Abstract Due to excessive proliferation and metastasis, glioma is the most common primary tumor in the central nervous system. Previous reports show simulated microgravity (SMG) has the ability to inhibit the proliferation and migration of cancer. The aim of this study was to evaluate the viability and migration of U251 cells in SMG environment. SMG induced apoptosis of U251 cells. The FAK/RhoA/Rock and FAK/Nek2 signaling events were attenuated by SMG to destabilize actin cytoskeleton and centrosome disjunction, which caused G2/M arrest and inhibition of cell viability and migration. Overexpressed FAK reversed SMG-induced inhibition of viability and migration in U251 cells, which increased downstream RhoA/Rock signaling and Nek2. These findings reveal novel pathways of FAK/RhoA/Rock and FAK/Nek2 are affected by SMG, and highlight an opportunity to expand therapeutic options in a variety of settings. […]

  • Pancreatic duct-like cell line derived from pig embryonic stem cells: expression of uroplakin genes in pig pancreatic tissue
    on April 1, 2019 at 12:00 am

    Abstract The isolation of a cell line, PICM-31D, with phenotypic characteristics like pancreatic duct cells is described. The PICM-31D cell line was derived from the previously described pig embryonic stem cell-derived exocrine pancreatic cell line, PICM-31. The PICM-31D cell line was morphologically distinct from the parental cells in growing as a monolayer rather than self-assembling into multicellular acinar-like structures. The PICM-31D cells were propagated for over a year at split ratios of 1:3 to 1:10 at each passage without change in phenotype or growth rate. Electron microscopy showed the cells to be a polarized epithelium of cuboidal cells joined by tight junction-like adhesions at their apical/lateral aspect. The cells contained numerous mucus-like secretory vesicles under their apical cell membrane. Proteomic analysis of the PICM-31D’s cellular proteins detected MUC1 and MUC4, consistent with mucus vesicle morphology. Gene expression analysis […]

  • Genome mutation after introduction of the gene editing by electroporation of Cas9 protein (GEEP) system in matured oocytes and putative zygotes
    on April 1, 2019 at 12:00 am

    Abstract The application of CRISPR/Cas9 strategy promises to rapidly increase the production of genetically engineered animals since it yields stably integrated transgenes. In the present study, we investigated the efficiency of target mutations after electroporation with the CRISPR/Cas9 system using sgRNAs to target the MSTN or FGF10 genes in porcine-matured oocytes and putative zygotes. Effects of pulse number (3–7 pulse repetitions) during electroporation on the embryonic development and mutation efficiency were also investigated. Our results showed that the cleavage rate of matured oocytes with electroporation treatment significantly decreased as compared with electroporated putative zygotes (p < 0.05). Moreover, the rates of blastocyst formation from oocytes/zygotes electroporated with more than 5 pulses decreased. Mutation efficiency was then assessed after sequencing the target sites in individual blastocysts derived from […]

  • Genetic algorithm as an optimization tool for the development of sponge cell culture media
    on March 1, 2019 at 12:00 am

    Abstract Sponges are rich sources of novel natural products. Production in cell cultures may be an option for supply of these compounds but there are currently no sponge cell lines. Because there is a lack of understanding about the precise conditions and nutritional requirements that are necessary to sustain sponge cells in vitro, there has yet to be a defined, sponge-specific nutrient medium. This study utilized a genetic algorithm approach to optimize the amino acid composition of a commercially available basal cell culture medium in order to increase the metabolic activity of cells of the marine sponge Dysidea etheria. Four generations of the algorithm were carried out in vitro in wet lab conditions and an optimal medium combination was selected for further evaluation. When compared to the basal medium control, there was a twofold increase in metabolic activity. The genetic algorithm approach can be used to optimize other components of culture media to […]

  • Establishment of an electroporation-mediated gene delivery system in porcine spermatogonial stem cells
    on March 1, 2019 at 12:00 am

    Abstract Spermatogonial stem cells (SSCs) are a useful tool for the generation of genetically modified transgenic sperm. As a result, the transfer of specific genes into the cytoplasm of SSCs is crucial for the successful generation of transgenic sperm. Here, we report electroporation conditions optimized for SSCs derived from the porcine testis. The highest transfection efficiency and cell viability were observed in porcine SSCs transfected with 1 μg transgenic vector with a single electric pulse from an electroporator at a voltage of 100 V and a capacitor setting of 250 μF. The transfection efficiency and cell viability were constant regardless of the size of the transgenic vector. Furthermore, we did not detect loss of spermatozoa differentiation potential in the transfected porcine SSCs. From these results, we confirm that this electroporation-based gene delivery system can effectively introduce foreign DNA into the genome of porcine SSCs […]

  • Effect of attenuation of fibroblast growth factor receptor 2b signaling on odontoblast differentiation and dentin formation
    on March 1, 2019 at 12:00 am

    Abstract Attenuation of fibroblast growth factor receptor (FGFR) 2b signaling suppresses the differentiation of oral epithelial stem cells to ameloblasts, their survival and viability remaining unaffected; however, its effect on dentin formation is unknown. This study aimed to clarify the effect of attenuation of FGFR2b signaling on odontoblast differentiation and dentin formation. Initially, we used a murine rtTA transactivator/tetracycline promoter system for inducible and reversible attenuation of FGFR2b signaling in adult mice. Experimental animals overexpressed soluble FGFR2b (sFGFR2b), and wild-type controls were selected from the same litter (WT group). Histological analysis of CMV mice confirmed the obliteration of the enamel and ameloblast layer, and micro CT analysis revealed a significant increase in dentin thickness in CMV mice rather than in WT mice (P < 0.05). On analyzing the expression of dentin-related differentiation factors, […]

  • Exosomes derived from mesenchymal stem cells inhibit mitochondrial dysfunction-induced apoptosis of chondrocytes via p38, ERK, and Akt pathways
    on March 1, 2019 at 12:00 am

    Abstract Osteoarthritis (OA) is the most common chronic joint disease worldwide. Chondrocyte, as the only resident cell type in cartilage, its apoptosis is of pathogenetic significance in OA. Mesenchymal stem cell (MSC)-based-therapy has been proved effective in OA in animals and clinical studies. Nowadays, the regenerative potential of MSC-based therapy is mostly attributed to its paracrine secretion, in which exosomes may play an important role. In the present study, we aimed to find out the significance of MSC-derived exosomes (MSC-Exos) on the viability of chondrocytes under normal and inflammatory conditions. Bone marrow MSCs (BMSCs) and chondrocytes from rabbits were cultured in vitro. BMSC-Exos were isolated by an ultracentrifugation method. Transmission electron microscopy and Western blot were used to identify exosomes. The internalization of BMSC-Exos into chondrocytes was observed by fluorescent microscope. The viability and apoptosis of chondrocytes […]

  • miR-145-5p suppresses osteogenic differentiation of adipose-derived stem cells by targeting semaphorin 3A
    on March 1, 2019 at 12:00 am

    Abstract Adipose-derived stem cells (ADSCs) provide a novel method for bone tissue regeneration, but their adipogenic tendency limits their therapeutic efficacy. MicroRNAs (miRNAs) have been reported to regulate stem cell differentiation and bone tissue regeneration, but the detailed mechanism is poorly investigated. Our study indicated that inhibition of miR-145-5p enhanced the osteogenic potential of ADSCs and reduced the adipogenic differentiation. Osteogenesis- and adipogenesis-associated genes were detected by qRT-PCR indicating a corresponding result. Moreover, semaphorin 3A (sema3A) was found to be a target of miR-145-5p, as confirmed by a luciferase activity assay, qRT-PCR, and western blotting. Inhibition of miR-145-5p promoted migration, as detected by wound healing and Transwell assays, but did not affect proliferation, as detected by CCK-8 and ki-67 assays. The effects of miR-145-5p inhibitors on ADSC progression rescued by siRNA of Sema3a and si-sema3a […]


Policy | About SIVB | Privacy Policy | Contact Us | Site Map
Society for In Vitro Biology 514 Daniels St., Suite 411 Raleigh, NC 27605 Phone: (910) 755-5431 Fax: (910) 755-5432
© 2016. All Rights Reserved.

Site created and maintained by Satori Digital Marketing original theme Frontier Theme.
Frontier Theme