Recent Articles

Below are the titles and abstracts from the most recent articles published in In Vitro Cellular and Developmental Biology – Animal. Click on the title to view the full article at Springerlink.

 

  • Controlled synchronization of prolactin/STAT5 and AKT1/mTOR in bovine mammary epithelial cells
    on February 20, 2020 at 12:00 am

    Abstract The prolactin/STAT5 and AKT1/mTOR pathways play a key role in milk protein transcription and translation, respectively. However, the correlation between them in bovine mammary epithelial cells remains unclear. Here, mRNA and protein expression levels of AKT1, STAT5, and mTOR and the phosphorylation of these proteins were determined. Cell proliferation and viability were examined using the CASY-TT assay. Purified bovine mammary epithelial cells were cultured in differentiation media for different periods. The basic differentiation medium contained a lactogenic hormone cocktail of insulin (5 μg/mL), hydrocortisone (1 μg/mL), and prolactin (5 μg/mL). The cells cultured in this medium grew slowly and expressed higher levels of p-STAT5, p-AKT1, and p-mTOR (activated form) than those of control cells. Although the phosphorylation ratio was not increased, transcription and translation of these proteins were upregulated by the addition of […]

  • Delineating cell behavior and metabolism of non-melanoma skin cancer in vitro
    on January 22, 2020 at 12:00 am

    Abstract Non-melanoma skin cancers - basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) - are the most frequent forms of malignant neoplasm in humans worldwide. The etiology of these carcinomas is multifactorial. In addition to the harmful effect of UV light, altered cross-talk between neoplastic epithelial cells and the supporting dermal fibroblasts contributes to the regulation of tumor cell behavior, growth and survival. Metabolic cooperation between these cell types allows them to adapt and react to changes in their surrounding microenvironment by modifying their cellular bioenergetics and biosynthesis. We characterized the growth, behavior, and metabolic activity of human BCC cells, E-cadherin-competent SCC cells and E-cadherin-suppressed SCC cells in the presence or absence of dermal fibroblasts. In mono-cultures and co-cultures, BCC and SCC cells demonstrated distinct morphology, growth and organizational patterns. These tumor cells also exhibited […]

  • NRF1-enhanced miR-4458 alleviates cardiac hypertrophy through releasing TTP-inhibited TFAM
    on January 15, 2020 at 12:00 am

    Abstract Growing evidence suggests the crucial role of microRNAs (miRNAs) in regulating basic cell functions, and therefore participating in the pathologic development of diverse human diseases, including cardiac hypertrophy. Herein, we explained that miR-4458 was distinctly stimulated in Ang II-stimulated hypertrophic H9c2 cells. Intriguingly, miR-4458 inhibition led to exacerbated hypertrophic phenotypes in Ang II-treated H9c2 cells. In addition, the compensatory upregulation of miR-4458 in Ang II-treated H9c2 cells was ascribed to its transcriptional enhancement by NRF1, a transcription factor previously identified to be activated in early cardiac hypertrophy. Moreover, we discovered that miR-4458 served as a negative modulator in cardiac hypertrophy by prompting TFAM, a well-recognized myocardial protective protein. TTP, a RBP that always leads to degradation of recognized mRNAs, was predicted to interact with both miR-4458 and TFAM mRNA. Importantly, we verified […]

  • LINC00319 promotes migration, invasion and epithelial-mesenchymal transition process in cervical cancer by regulating miR-3127-5p/RPP25 axis
    on January 15, 2020 at 12:00 am

    Abstract Cervical cancer is among the most prevalent malignancies for women. An increasing number of evidences have been proved that long non-coding RNAs (lncRNAs) play significant role in the initiation and progression of cervical cancer. However, the function of long intergenic non-protein coding RNA 319 (LINC00319) in cervical cancer still remains vague. In this study, our purpose was to investigate the effects of LINC00319 on cell migration, invasion and epithelial-mesenchymal transition (EMT) process in cervical cancer. It confirmed that LINC00319 was highly expressed in tissues and cell lines in cervical cancer. Further, overexpression of LINC00319 accelerates cell migration, invasion and EMT in cervical cancer. Moreover, LINC00319 could bind with miR-3127-5p and negatively regulated its expression. Besides, RPP25 was targeted by miR-3127-5p, and its expression was negatively/positively regulated by miR-3127-5p/LINC00319. Additionally, miR-3127-5p mimics or […]

  • Interstitial serum albumin empowers osteosarcoma cells with FAIM2 transcription to obtain viability via dedifferentiation
    on January 15, 2020 at 12:00 am

    Abstract During hematogenous metastasis, cancer cells escape from primary lesions and enter into the circulatory system, and only a few can colonize distant organs. However, the mechanism of cell survival and metastasis in the hematopoietic environment remains unclear. Angiorrhea is the character of pathological neovascularization in malignant tumors and commonly detected in osteosarcoma (OS), a bone tumor that prefers circulatory metastasis. In the present study, we focused on the notable role of serum albumin, the highest content in blood plasma, on OS progression. Our results indicated that serum albumin might act as a barrier against exogenous cancer cells during hematogenous metastasis. OS cells with high metastatic potential could gradually obtain strong viability through dedifferentiation under the effect of serum albumin in the angiorrhea region. Further exploration showed that serum albumin could increase the intracellular calcium concentration by activating […]

  • Exploration of targets regulated by miR-125b in porcine adipocytes
    on January 7, 2020 at 12:00 am

    Abstract MicroRNA (miRNA) has been proved to play a key role in lipid metabolism. In our previous study, miR-125b was validated to be differentially expressed in preadipocytes and adipocytes, which was also proved to involve in lipid metabolism. To explore the comprehensive targets of miR-125b in adipocytes, isobaric tag for relative and absolute quantitation (iTRAQ) analysis was performed to obtain differentially expressed proteins in adipocytes comparing negative control (NC) and miR-125b mimic, combining with digital gene expression (DGE) profiling of mRNA incorporated into RNA-induced silencing complex (RISC) pulled down by biotinylated miR-125b mimic and targets prediction of miR-125b by three algorithms, acyl-CoA dehydrogenase short chain (ACADS) and mitochondrial trans-2-enoyl-CoA reductase (MECR) were screened out as miR-125b direct targets. Luciferase reporter assay further validated that miR-125b mimic significantly inhibited the luciferase activity by […]

  • Construction of calcitonin gene-related peptide-modified mesenchymal stem cells and analysis of their effects on the migration and proliferation of vascular smooth muscle cells
    on January 7, 2020 at 12:00 am

    Abstract Lentiviral expression vectors for calcitonin gene-related peptide (CGRP) were used to transfect rat bone marrow mesenchymal stem cells (MSCs). After assessing the biological characteristics of proliferation and aging in MSCs transfected with CGRP, we observed the effects of the CGRP-modified rat MSCs on the migration and proliferation of rat vascular smooth muscle cells (VSMCs) in vitro. Rat MSCs were isolated, cultured in vitro, and identified by flow cytometry. A CGRP recombinant lentivirus was transfected into MSCs. The transfection efficiency was determined by fluorescence microscopy and flow cytometry, and CGRP in MSCs was detected by real-time quantitative PCR, ELISA, and immunofluorescence. The proliferation and senescence of CGRP-modified MSCs were evaluated by MTT assay and beta-galactosidase staining. VSMCs were isolated, cultured in vitro, and identified by immunofluorescence. CGRP-modified MSCs and VSMCs were cocultured in a Transwell system. The […]

  • Effect of CSE on M1/M2 polarization in alveolar and peritoneal macrophages at different concentrations and exposure in vitro
    on January 2, 2020 at 12:00 am

    Abstract Cigarette smoke exposure is one of the main etiologies for chronic obstructive pulmonary disease. Moreover, cigarette smoke participates in disease progression by inducing abnormal macrophage polarization; however, the effects of cigarette smoke on M1/M2 macrophage polarization have not been established. The aim of the current study was to determine the effects of cigarette smoke extract (CSE) on M1/M2 macrophage polarization in alveolar and peritoneal macrophages (AM and PM, respectively) at different concentrations and exposure times. Rat AM and PM were cultured with CSE at different concentrations. CCK-8 was used as an indicator of cell viability, and mRNA expression of M1 (iNOS, TNF-α, and IL-1β) and M2 markers (arg-1, CD206, and TGF-β1) were measured at 3, 6, 9, 12, and 24 h using qPCR. Expressions of CD86 and CD206 proteins at 12 h were determined using flow cytometry, and the iNOS/arg-1 ratio was used to determine the […]

  • Establishment and characterization of a fibroblast cell line from postmortem skin of an adult Chinese muntjac ( Muntiacus reevesi )
    on January 2, 2020 at 12:00 am

    Abstract Isolation and culture of somatic cells from animals especially endangered species have raised great concerns as it is being an effective and convenient way to preserve genetic materials for future studies. As a species native to China, Chinese muntjac (Muntiacus reevesi) is listed as a beneficial species with economic and scientific research values. To our knowledge, however, there have been no published reports on somatic cell preservation of this species to date. To conserve biological resources for sustainability of Chinese muntjacs’ genetic diversity, we established a fibroblast cell line from the postmortem ear skin of an adult male Chinese muntjac. The cultured cells were adherent to the plastic and showed an elongated, thin, and spindle-like shape. Moreover, they were FSP1- and VIM-positive characterizing them to be fibroblastic. No microorganisms (bacteria, fungi, or mycoplasmas) were detected throughout the whole study. Cell viability was high […]

  • Long non-coding RNA CDKN2B-AS1 promotes osteosarcoma by increasing the expression of MAP3K3 via sponging miR-4458
    on January 1, 2020 at 12:00 am

    Abstract Osteosarcoma (OS) is the most common primary malignant bone tumor worldwide. Recently, several studies have shown that the long non-coding RNA (lncRNA) CDKN2B-AS1 plays a critical role in several cancers. However, the function and underlying mechanism of CDKN2B-AS1 in OS development remains elusive. In this study, we firstly assessed the expression of CDKN2B-AS1 in OS tissues and cells, showing that CDKN2B-AS1 expression were remarkably upregulated in OS tissues and cells. Moreover, CDKN2B-AS1 knockdown suppressed cell proliferation, migration, and EMT progress in OS. Interestingly, we found and proved that CDKN2B-AS1 could sponge miR-4458 in OS cells. Moreover, MAP3K3 was certified as a downstream target of miR-4458 in OS. Besides, MAP3K3 was negatively regulated by miR-4458 and positively regulated by CDKN2B-AS1. More importantly, overexpression of MAP3K3 could partly counteract the effect of CDKN2B-AS1 suppression on the biological behavior of OS cells. […]

  • LncRNA TUG1 promoted osteogenic differentiation through promoting bFGF ubiquitination
    on January 1, 2020 at 12:00 am

    Abstract LncRNA TUG1 has the potential to promote the osteogenic differentiation of several cells, but the role of lncRNA TUG1 in osteogenic differentiation of tendon stem/progenitor cells (TSPCs) is still unknown. This study aims to determine the role of lncRNA TUG1 in osteogenic differentiation of TSPCs. bFGF, RUNX2, and Osterix protein expressions were detected by western blot. LncRNA TUG1 and bFGF expression was detected by qRT-PCR. RNA immunoprecipitation (RIP) assay was used to confirm the interaction between TUG1 and bFGF2. Ubiquitination assay was used to determine the ubiquitination of bFGF protein. During osteogenic differentiation, the protein expression of bFGF was significantly downregulated in TSPCs, and the expression of TUG1 was significantly elevated in TSPCs. Interfering TUG1 or overexpressing bFGF suppressed osteogenic differentiation of TSPCs. In addition, lncRNA TUG1 interacted with bFGF, and lncRNA TUG1 promoted the ubiquitination of bFGF […]

  • Synergistic induction of drug-metabolizing enzymes in co-cultures of bovine hepatocytic and sinusoidal cell lines
    on January 1, 2020 at 12:00 am

    Abstract Hepatocyte-derived cell lines provide useful experimental systems for studying liver metabolism. Unlike human and rodents, few hepatocyte-derived cell lines have been generated from cattle. Here, we established two immortalized bovine hepatocyte-derived cell lines (BH4 and BH5) via transfection with a SV40 large T-antigen construct. Morphological and immunocytochemical analyses revealed that BH4 and BH5 originated from hepatocytes and biliary-epithelial cells, respectively. A potent carcinogen, 3-methylcholanthrene (3-MC), upregulated gene expression of cytochrome P450 (CYP)1A1, CYP1A2, and CYP1B1 in BH4 and BH5, but only to levels less than one-fifteenth of those in primary cultured bovine hepatocytes. Phenobarbital (PB) also increased expression levels of CYP2B6, CYP2C18, and CYP3A4 in BH4 and BH, but at a lower level than 3-MC. By contrast, when BH4 or BH5 was co-cultured with previously established bovine liver sinusoidal cell lines and treated with […]

  • miR-140-3p exhibits repressive functions on preosteoblast viability and differentiation by downregulating MCF2L in osteoporosis
    on January 1, 2020 at 12:00 am

    Abstract Previous research manifested that miR-140-3p was a latent biomarker for osteoporosis. Nevertheless, the mechanism of miR-140-3p in osteoporosis is still not clear and needs ulteriorly studying. The purpose of our paper was to ulteriorly probe the underlying mechanism of miR-140-3p on osteoporosis. Firstly, based on the data acquired from GEO database, we found that miR-140-3p was highly expressed; meanwhile, MCF2L was lowly expressed in osteoporosis patients. Upregulation/downregulation of miR-140-3p by miR-140-3p mimic/inhibitor restrained/promoted MC3T3-E1 cell viability and differentiation. However, miR-140-3p over-expression/downregulation accelerated/repressed MC3T3-E1 cell apoptosis. MCF2L was forecasted as a target of miR-140-3p by miRanda, miRWalk, and TargetScan miRNA target gene prediction software. Luciferase reporter assay confirmed that MCF2L could be directly targeted by miR-140-3p. Moreover, we identified that the expression of MCF2L was […]

  • Induction of integration-free human-induced pluripotent stem cells under serum- and feeder-free conditions
    on January 1, 2020 at 12:00 am

    Abstract Human-induced pluripotent stem cells (hiPSCs) have shown great potential toward practical and scientific applications. We previously reported the generation of human dental pulp stem cells using non-integrating replication-defective Sendai virus (SeVdp) vector in feeder-free culture with serum-free medium hESF9. This study describes the generation of hiPSCs from peripheral blood mononuclear cells to increase the donor population, while reducing biopsy invasiveness. From 6-d-old primary culture of peripheral blood mononuclear cells (PBMCs) with IL-2, hiPSCs were established using SeVdp(KOSM)302L with recombinant Laminin-511 E8 fragments under serum-free condition. The established PBMC-derived hiPSCs showed pluripotency and differentiation ability both in vivo and in vitro. In addition, we evaluated microarray data from PBMC- and dental pulp–derived hiPSCs. These hiPSCs will be beneficial for characterizing the molecular mechanisms of cellular […]

  • MiR-let-7d-3p regulates IL-17 expression through targeting AKT1/mTOR signaling in CD4 + T cells
    on January 1, 2020 at 12:00 am

    Abstract The aberrant expression of interleukin-17 (IL-17) has been reported in the pathogenesis of autoimmune diseases, such as primary Sjögren’s syndrome (pSS). However, the detailed mechanism remains poorly understood. We aim to characterize the expression of IL-17 in pSS and analyze the detailed underlying mechanism. IL-17 and microRNA miR-let-7d-3p expression were assayed by quantitative real-time PCR and Western blot, and proliferation-related protein expression was measured by Western blot. Luciferase reporter assays were performed to detect the direct regulation of IL-17 by miR-let-7d-3p. Expression of miR-let-7d-3p was negatively correlated with the expression of IL-17 in patients with pSS. Besides, the AKT1/mTOR signaling pathway was found critical for miR-let-7d-3p-mediated IL-17 expression. Furthermore, miR-let-7d-3p targeted AKT1 to bridge the regulation of IL-17. Finally, we verified AKT1 co-expression could rescue IL-17 downregulation […]

  • New-Generation Benzimidazole-Based Plasmid Delivery Reagents with High Transfection Efficiencies on the Mammalian Cells
    on January 1, 2020 at 12:00 am

    Abstract Gene transfer and gene therapy studies require high-efficiency gene delivery reagents. By transferring the piece of DNA that we are interested in, we can alter the expression of certain gene or genes to further characterize its role in the cell function or in the organism’s development, metabolism, immune system, etc. Transfection reagents that enable efficient delivery of the DNA to the cells are important tools in the molecular and cellular biology studies. There are chemical products and tools that have been used for transfection of the cells but they are not as efficient as desired or they can induce cytotoxicity. It is crucial to design and generate new transfection reagents to further support the field of biotechnology, molecular studies, cellular biology, and in vitro studies relying on them. The more efficient and the less cytotoxic compounds will be especially useful for the field. We synthesized a new set of benzimidazole-based transfection […]

  • Establishment of two midgut cell lines from the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae)
    on January 1, 2020 at 12:00 am

    Abstract Two cell lines were generated from larval midguts of Spodoptera frugiperda and have been 26 passaged over 50 times. The CT/BCIRL-SfMG1-0611-KZ line was established from 27 trypsinized, minced whole midgut tissues: the CT/BCIRL-SfMG-0617-KZ line from isolated 28 midgut muscle tissue (containing some residual epithelial cells). Additional midgut cultures were 29 generated from isolated epithelial cells; some passaged not more than three times, which grew 30 very slowly and survived longer than 1 year. The continuously replicating cell lines contain 31 firmly adhering cells with different morphologies, including elongated, spherical, and/or 32 rectangular. The mean diameters of these cell lines are 9.3 ± 4.0 μm (SfMG1-0611) and 9.2 ± 3.9 33 μm (SfMG-0617). Growth curves for the two lines have relatively lengthy doubling times of 73.9 34 h and 50.4 h for SfMG1-0611 and SfMG-0617, respectively. We confirmed the identity of these 35 lines […]

  • 2019 Special Reviewers Thank You
    on January 1, 2020 at 12:00 am
  • Basal characterization and in vitro differentiation of putative stem cells derived from the adult mouse ovary
    on January 1, 2020 at 12:00 am

    Abstract Lately, stem cell approaches have provided new information on reproductive organ function and additionally recommended novel treatment possibilities. The type(s) and differentiation potential of stem cells present in the mammalian ovary are largely unknown; while oogonial stem cells have been reported, we explored the possibility that multipotent stem cells may reside in the ovary and have wide differentiation potential. In this experimental study, homogenates of whole mouse ovaries were sorted using the stem cell surface markers stem cell antigen-1 and stage specific embryonic antigen-1/CD15. Viable double-positive cells 3–10 μm in diameter were evaluated immediately after sorting and after culture using differentiation conditions. Ovarian-derived stem cells were differentiated into the three main cell types: adipocytes, chondrocytes, or osteocytes. The subsequent culture was performed in media containing bone morphogenetic protein 4 (BMP-4) […]

  • Long noncoding RNA HOXC-AS3 facilitates the progression of invasive mucinous adenocarcinomas of the lung via modulating FUS/FOXM1
    on January 1, 2020 at 12:00 am

    Abstract Invasive mucinous adenocarcinoma of the lung (IMA), a mucinous variant of lung adenocarcinoma, is strongly linked with a worse prognosis. Therefore, a deeper understanding about its molecular mechanism may conduce to a promising IMA therapy. Long non-coding RNAs (lncRNAs) have recently caught great attention for their crucial roles in diverse diseases regarding tumor initiation and progression. However, the potential role of the lncRNA HOXC-AS3 IMA is not well established. Hence, the purpose of present study is to manifest HOXC-AS3-regulated inner mechanism in IMA development. It revealed that HOXC-AS3 was highly expressed in IMA cells. Additionally, it was identified that the significant down-regulation of HOXC-AS3 obstructed cell proliferation and migration in IMA. As far as mechanism is concerned, it found that HOXC-AS3 recruited FUS to stabilize FOXM1 mRNA, accelerating IMA progression. Taken together, these data suggested that HOXC-AS3 may be […]


Policy | About SIVB | Privacy Policy | Contact Us | Site Map
Society for In Vitro Biology 514 Daniels St., Suite 411 Raleigh, NC 27605 Phone: (910) 755-5431 Fax: (910) 755-5432
© 2016. All Rights Reserved.

Site created and maintained by Satori Digital Marketing original theme Frontier Theme.
Frontier Theme