Recent Articles

Below are the titles and abstracts from the most recent articles published in In Vitro Cellular and Developmental Biology – Animal. Click on the title to view the full article at Springerlink.

 

  • Enhanced matrix production by cocultivated human stem cells and chondrocytes under concurrent mechanical strain
    on June 15, 2021 at 12:00 am

    Abstract Conventional treatments of osteoarthritis have failed to re-build functional articular cartilage. Tissue engineering clinical treatments for osteoarthritis, including autologous chondrocyte implantation, provides an alternative approach by injecting a cell suspension to fill lesions within the cartilage in osteoarthritic knees. The success of chondrocyte implantation relies on the availability of chondrogenic cell lines, and their resilience to high mechanical loading. We hypothesize we can reduce the numbers of human articular chondrocytes necessary for a treatment by supplementing cultures with human adipose-derived stem cells, in which stem cells will have protective and stimulatory effects on mixed cultures when exposed to high mechanical loads, and in which coculture will enhance production of requisite extracellular matrix proteins over those produced by stretched chondrocytes alone. In this work, adipose-derived stem cells and articular chondrocytes […]

  • Transcriptome of D14 in vivo x in vitro bovine embryos: is there any difference?
    on June 14, 2021 at 12:00 am

    Abstract It is well-established that in vitro culture affects quality, gene expression, and epigenetic processes in bovine embryos and that trophectoderm cells are the most susceptible to abnormalities. These changes have been reported as the main factors responsible for losses observed after transfer of in vitro–produced embryos. The present study aimed to investigate the effect of an in vitro system on bovine embryo transcriptional profiles on D14 of development. Two groups were used—one with embryos produced in vitro until D7 (day 7; VT group) and another with embryos produced in vivo by hormonal stimulation, with embryos collected on D7 (VV group). D7 embryos at similar developmental stages from both treatments were transferred to recipient uteri and recollected on D14. From D14 embryos of both treatments, trophoblast samples were removed by biopsy for sexing and transcriptome analyses. Embryos were sexed by polymerase chain reaction (PCR), and only males […]

  • BAFF signaling drives interstitial transformation of mouse renal tubular epithelial cells in a Pin1-dependent manner
    on June 14, 2021 at 12:00 am

    Abstract Aberrant expression of B cell–activating factor belonging to TNF superfamily (BAFF) and its receptors results in abnormal biological activities in hematopoietic and non-hematopoietic cells and is closely associated with the occurrence and development of various diseases. However, the biological significance and potential mechanisms underlying BAFF signaling in renal tubular epithelial cells (RTECs) remain unknown. This study aimed to investigate the biological role of BAFF signaling in RTECs. Mice primary RTECs were applied. The proliferation status and apoptotic rates were examined by MTS assay and flow cytometry, respectively. The expression of BAFF and its receptors was analyzed via flow cytometry and sodium ion transport function, and cytokeratin-18 expression was detected through immunofluorescence staining. In addition, Pin1 was knocked down via siRNA and its expression was assessed through reverse transcription PCR. Lastly, western blotting was […]

  • Therapeutic potential of ginsenoside Rg3 and Rf for Huntington’s disease
    on June 14, 2021 at 12:00 am

    Abstract Ginseng is a popular herbal medicine and known to have protective and therapeutic effects in various diseases. Ginsenosides are active gradients representing the diverse pharmacological efficacy of ginseng. Huntington’s disease (HD) is incurable genetic disorder associated with mutant huntingtin (mHtt) aggregation in the central nervous system. This study was conducted to investigate the effects of ginsenoside Rg3 and Rf on mHtt aggregation, cell viability, mitochondrial function, and apoptotic molecules on HD model. To investigate the effect of ginsenosides on HD, neural stem cells were isolated from the R6/2 mouse brain and used as a cellular model of HD. Nuclear aggregation of mHtt was measured by immunocytochemistry, and expressions of mitochondrial biogenesis and apoptotic molecules were investigated by western blot. As a result, the number of mHtt aggregates positive cells has decreased by ginsenoside Rg3 and Rf treatment in cellular model of HD. […]

  • Plant Contributed Papers
    on June 1, 2021 at 12:00 am
  • Plant Posters
    on June 1, 2021 at 12:00 am
  • Plant Symposia and Workshops
    on June 1, 2021 at 12:00 am
  • Plenary Symposia
    on June 1, 2021 at 12:00 am
  • Index
    on June 1, 2021 at 12:00 am
  • Animal Contributed Papers
    on June 1, 2021 at 12:00 am
  • International Conference
    on June 1, 2021 at 12:00 am
  • Education Symposium
    on June 1, 2021 at 12:00 am
  • Keynote Symposium
    on June 1, 2021 at 12:00 am
  • Joint Symposium
    on June 1, 2021 at 12:00 am
  • Animal Symposia and Workshops
    on June 1, 2021 at 12:00 am
  • Animal Posters
    on June 1, 2021 at 12:00 am
  • Frequent genetic defects in the p16/INK4A tumor suppressor in canine cell models of breast cancer and melanoma
    on May 1, 2021 at 12:00 am

    Abstract The cyclin-dependent kinase inhibitors (CKIs) belong to a group of key cell cycle proteins that regulate important cancer drug targets such as the cyclin/CDK complexes. Gene defects in the INK4A/B CKI tumor suppressor locus are frequently associated with human cancers and we have previously identified similar defects in canine models. Many of the cancer-associated genetic alterations, known to play roles in mammary tumor development and progression, appear similar in humans and dogs. The objectives of this study were to characterize expression defects in the INK4 genes, and the encoded p16 family proteins, in spontaneous canine primary mammary tumors (CMT) as well as in canine malignant melanoma (CML) cell lines to further develop these models of spontaneous cancers. Gene expression profiles and characterization of p16 protein were performed by rtPCR assay and immunoblotting followed by an analysis of relevant sequences with bioinformatics. The INK4 gene […]

  • Cultivation of fractionated cells from a bioactive-alkaloid-bearing marine sponge Axinella sp.
    on May 1, 2021 at 12:00 am

    Abstract Sponges are among the most primitive multicellular organisms and well-known as a major source of marine natural products. Cultivation of sponge cells has long been an attractive topic due to the prominent evolutionary and cytological significance of sponges and as a potential approach to supply sponge-derived compounds. Sponge cell culture is carried out through culturing organized cell aggregates called ‘primmorphs.’ Most research culturing sponge cells has used unfractionated cells to develop primmorphs. In the current study, a tropical marine sponge Axinella sp., which contains the bioactive alkaloids, debromohymenialdisine (DBH), and hymenialdisine (HD), was used to obtain fractionated cells and the corresponding primmorphs. These alkaloids, DBH and HD, reportedly show pharmacological activities for treating osteoarthritis and Alzheimer’s disease. Three different cell fractions were obtained, including enriched spherulous cells, large mesohyl […]

  • Amniotic membrane matrix effects on calcineurin-NFAT-related gene expressions of SHED treated with VEGF for endothelial differentiation
    on May 1, 2021 at 12:00 am

    Abstract The nuclear factor of activated T-cell (NFAT) signaling pathway is involved in angiogenesis following initiation by vascular endothelial growth factor (VEGF). A number of angiogenic genes have been associated with calcineurin in the NFAT pathway, forming a calcineurin-NFAT pathway. This study aims to investigate the involvement of four angiogenic genes within the calcineurin-NFAT pathway in the endothelial-like differentiation of stem cells from human exfoliated deciduous teeth (SHED) cultured on a human amniotic membrane (HAM) induced by VEGF. SHED were induced with VEGF for 24 h, then cultured on the stromal side of HAM. The cells were then further induced with VEGF until days 1 and 14. To understand the role of calcineurin, its potent inhibitor, cyclosporin A (CsA), was added into the culture. Results from SEM and H&E analyses showed SHED grew on HAM surface. Gene expression study of Cox-2 showed a drastically reduced expression with CsA treatment […]

  • Involvement of LIMK2 in actin cytoskeleton remodeling during the definitive endoderm differentiation
    on May 1, 2021 at 12:00 am

    Abstract LIM kinases are involved in various cellular events such as migration, cycle, and differentiation, but whether they have a role in the specification of mammalian early endoderm remains unclear. In the present study, we found that depletion of LIMK2 severely inhibited the generation of definitive endoderm (DE) from human embryonic stem cells (hESCs) and promoted an early neuroectodermal fate. Upon the silencing of LIMK2 during the endodermal differentiation, the assembly of actin stress fibers was disturbed, and the phosphorylation of cofilin was decreased. In addition, knockdown of LIMK2 during DE differentiation also interfered the upregulation of epithelial-to-mesenchymal transition (EMT)-related genes and cell migration. Collectively, the results highlight that the serine/threonine kinase LIMK2, acting as a key regulator in actin remodeling, plays a critical role in endodermal lineage determination.

Share this page

Policy | About SIVB | Privacy Policy | Contact Us | Site Map
Society for In Vitro Biology 514 Daniels St., Suite 411 Raleigh, NC 27605 Phone: (910) 755-5431 Fax: (910) 755-5432
© 2016. All Rights Reserved.

Site created by Satori Digital Marketing original theme Frontier Theme.
Frontier Theme