Below is the current program for the 2021 In Vitro Biology Meeting.

This program is subject to change

Saturday, June 5


9:00 am – 5:00 pm

Grow with the Flow: Creative Change on Advanced Flow Cytometry

Convener: J. Pon Samuel, Corteva Agriscience, and Matthew Goff, Beckman Coulter Life Sciences

Advanced Registration will be required to participate in this workshop


9:15 am – 5:30 pm

15th International Conference on Invertebrate and Fish Cell Culture: Emerging Technologies and Future Directions

Organiziers: Lucy Lee, University of the Fraser Valley; Cynthia L. Goodman, USDA, ARS, BCIRL; Guy Smagghe, Ghent University; Kavita Bitra, BASF Corporation; and Jessica Monserrate, BASF Corporation

David Stachura, California State University Chico
Lauran Madden, BlueNalu Inc.
Creating a Future for Seafood Where the Ocean Thrives
Brandon Chen, Finless Foods
Use of Fish Cell Lines to Assess the Toxicity of Heavy Fuel Oil (HFO)
Niels Bols, University of Waterloo
Shirley Pomponi, Florida Atlantic University
Cell Culture System: Production of an Infectious Clone of Dicistrovirus and Iflaviruses
Kavita Bitra, BASF Corporation
Insect Midgut Cell Cultures to Study and Optimize Cellular Uptake of dsRNA for RNAi-mediated Pest Control
Guy Smagghe, Ghent University
Glycoengineered Baculovirus-insect Cell Systems for Diverse Biomedical Applications
Donald Jarvis, University of Wyoming

Invertebrate and fish cell culture systems serve as valuable tools for the development and production of agricultural and biomedical products, as well as the screening of environmental contaminants. This symposium will focus on emerging technologies that are applicable in both research settings and industrial processes. Cellular agriculture is a rapidly growing area of advancement that involves the implementation of in vitro systems in place of whole plants or animals to produce agricultural products. A variety of these systems and potential products will be explored. We will examine the benefits of aquaculture, including the practical potential of selected marine products. The establishment of marine invertebrate cell cultures, which are linked to the discovery and development of novel pharmaceutical compounds, will be examined. We will review the use of fish cell lines to accurately assess the impact of potential toxins on the aquatic environment. Novel pest management strategies for field crops will also be investigated. The cloning of insect RNA viruses via cell lines will be outlined as a tool to generate more effective biological control agents. We will consider the use of cell cultures to optimize dsRNA uptake to increase the potency of RNAi-based insecticides. State-of-the art molecular approaches important to the development of novel cell culture systems for biomedical and agricultural research will be reviewed. We will end with a roundtable discussion to synthesize/summarize the ideas brought forward and discuss how these new technologies will point towards a future that will support the development of sustainable agriculture, improved stewardship of our environment (including the oceans), and enhanced systems for biomedical discoveries.

Sunday, June 6


8:00 am – 10:00 am

Crossing Kingdoms: Developing and Applying Editing Tools in Animals and Plants

Conveners: Michael J. Fay, Midwestern University, and Aaron Hummel, Pairwise


10:30 am – 12:30 pm

Leadership and Best Practices in Commercial Labs

Conveners: Reid Robinson, Sierra Gold Nurseries, and Carolyn Sluis, Tissue-Grown Corp

Cecilia Zapata, Front Range Biosciences
Jonathan Jasinski, Microplant Nurseries Inc.
Jeffrey Adelberg, Clemson University
Alexander Oliveira, Tissue-Grown Corp

Marine Invertebrate Cell Models: Applications and Implications for Research

Convener: Shirley A. Pomponi, Harbor Branch Oceanographic Institute – Florida Atlantic University

Cnidarian Symbioses
Stephanie Barnay-Verdier, Sorbonne Universite
Tunicate Stem Cells
Baruch Rinkevich, National Institute of Oceanography

Vertebrate, insect, and plant cell lines are important tools for research in many disciplines, including human health, evolutionary and developmental biology, agriculture, and toxicology. Although cell lines have been established from freshwater invertebrates (e.g., Hydra), attempts to establish cell lines from marine invertebrates have been unsuccessful until recently, when nutrient medium optimization resulted in the establishment of cell lines from several marine sponges.  Most research on marine invertebrate cells has been conducted on primary cultures.    This session will focus on three research areas using marine invertebrate cell models: evolutionary and developmental biology, symbiosis, and adult stem cell research. Sponges are ideal models to study animal evolution: they evolved hundreds of millions of years ago, and despite their simple body plan, they share many genes and molecular pathways with more structurally complex animals—including humans.  We will review recent research using sponge cells to elucidate the molecular foundations of early animal evolution and development.    Recent advances in understanding cellular mechanisms of marine invertebrate symbioses, particularly sponge-microbe and cnidarian-dinoflagellate, will also be reviewed.   Adult stem cells in multicellular organisms are crucial for tissue homeostasis, repair and regeneration. Although the properties of stem cells are well studied in vertebrate and terrestrial invertebrate models, very little is known about marine invertebrate adult stem cells (MISCs). MISCs are key participants in many unique processes that occur in marine organisms.  Research in progress on MISCs, particularly in tunicates, will be addressed.   The session will conclude with a panel discussion to summarize and synthesize the research presented, and to discuss applications of the technologies to address issues of societal importance, e.g., human health (including better understanding of disease processes, and discovery and development of novel pharmaceuticals), habitat restoration, and effects of climate change.


Variables Controlling Successful Gene Editing in Plants/New Tools

Conveners: Mohammed Oufattole, Benson Hill, and Yiping Qi, University of Maryland – College Park
Student Convener: Jishnu Bhatt, Pennsylvania State University

Overcoming Bottlenecks in Editing Plant Genomes
Daniel Voytas, University of Minnesota
Establishing an Efficient Base Editing System for Tomato
Joyce Van Eck, Boyce Thompson Institute (BTI)
Optimizing CRISPR-Cas Systems for Efficient Multiplexed Genome Engineering in Plants
Yiping Qi, University of Maryland, College Park
Unlocking Genetic Potential in Crops Through Gene Editing
Larry Gilbertson, Bayer U S. – Crop Science

Plant gene editing has been harnessed as a new research tool for reverse genetics as well as a new breeding tool to advance agriculture. Thanks to immense interest and investment in the field, the CRISPR-Cas gene editing toolbox is under rapid evolution with constant addition of new tools, from novel Cas nucleases to base editors and prime editors. These new tools have greatly benefited gene editing in plants. However, successful implementation of these tools depends on many variables, including design of the guide RNA, means for in planta guide RNA processing, method of delivery (e.g. Agrobacterium, biolistic, virus, nanoparticles etc.), promoters of choice for the Cas and guide RNA, codon and nuclear localization signal (NLS) optimization for the Cas, strategies for multiplexed editing, temperature regime, etc. In this session, invited speakers will present recent advances relevant to these aspects. The information will give the audience and users a timely update on the state-of-the-art of these exciting tools and how to best utilize them for specific precise gene editing outcomes in plants.



1:30 pm – 3:00 pm

Challenges in Establishment and Micropropagation of Woody Plant Species Under In Vitro Conditions

Conveners: Maria M. Jenderek, USDA-ARS, and Sylvia A. Mitchell, University of the West Indies
Student Convener: Hossam Mahmoud Kamel Mohamed, Bayer Limited Egypt

Emerging Infectious Disease: Coronaviruses

Conveners: Addy Alt-Holland, Tufts University, and Michael K. Dame, University of Michigan Medical School

Plant Genome Engineering – From Lab to Consumers

Conveners: Jyoti R. Rout, Intrexon, and Harold N. Trick, Kansas State University


3:15 pm – 5:30 pm

Opening Ceremony and Keynote Symposium

Keynote Speaker:
CRISPR-based Technologies for Targeted Genome Editing and Gene Regulation
J. Keith Joung, MD, PhD, Robert B. Colvin, M.D. Endowed Chair in Pathology, Desmond and Ann Heathwood Research Scholar, and a Pathologist at Massachusetts General Hospital (MGH) and Professor of Pathology at Harvard Medical School

J. Keith Joung is a leading innovator in the field of gene editing. He is the Robert B. Colvin, M.D. Endowed Chair in Pathology, Desmond and Ann Heathwood Research Scholar, and a Pathologist at Massachusetts General Hospital (MGH) and Professor of Pathology at Harvard Medical School. He is also a member of the Center for Cancer Research and the Center for Computational and Integrative Biology at MGH. Dr. Joung has been a pioneer in the development of important technologies for targeted gene editing and epigenetic editing of human cells. He has received numerous awards including an NIH Director’s Pioneer Award, an NIH Director’s Transformative Research Project R01 Award, the MGH Research Scholar Award, an NIH R35 MIRA (Maximizing Investigators Research Award), election into the American Association of University Pathologists, and designation as a “Highly Cited Researcher” in 2016, 2017, 2018, and 2019 by Thomson Reuters/Clarivate Analytics. He serves on the editorial boards of Genome Biology, Human Gene Therapy, and Trends in Biotechnology. He has co-founded and advises multiple biotechnology companies including Editas Medicine, Beam Therapeutics, Pairwise, and Verve Therapeutics. Dr. Joung holds a Ph.D. in genetics from Harvard University, an M.D. from Harvard Medical School and an A.B. in biochemical sciences from Harvard College.


7:30 pm – 9:30 pm

Student Symposium: RNA-Seq

Conveners: Evan M. Hill, University of Michigan, and Alperen Ozturk, Nigde Omer Halisdemir University

Monday, June 7


8:00 am – 10:00 am

Advanced Biological Tools for Biotechnology Applications

Conveners: Prakash P. Kumar, University of Singapore, Lori Marcum, Corteva Agriscience, and Richard Heller, University of South Florida

Nigel J. Mouncey, DOE Joint Genome Institute
Krishna Madduri, Corteva Agriscience
Anna Bulysheva, Old Dominion University
Andrei Pakhomov, Old Dominion University

Utilization of biological approaches is greatly expanded into a rapidly growing interdisciplinary area that incorporates engineering principles. This has included design-build-test cycles to synthesize entire new biological organisms or parts. The ability to introduce complex multi-gene pathways into organisms has found many applications in plant biotechnology to generate novel, favorable phenotypes and for production of valuable molecules in plants (vaccines and biofuels are only a few examples). Gene editing and the manipulation of mammalian cellular membranes or tissues has opened up new avenues of research to understand cellular processes or the development of new therapeutic approaches. This session will focus on the use of various biological tools that have been used to manipulate plant and animal cells and organelles. The possibility to perform analysis on single cells and subcellular compartments like plastids in plant cells and membrane and subcellular compartments such as the mitochondria in mammalian cells has considerably expanded the potential for biotechnology applications. The session will also focus on various aspects of cell manipulation and precise metabolic engineering and how these advanced tools can be used to develop new products and approaches.


10:30 am – 12:30 pm

Application of Stem Cell Technology to the Development of Tissue-specific Organoids

Conveners: Daysha Ferrer-Torres, University of Michigan School of Medicine, and John W. Harbell, JHarbell Consulting, LLC
Student Convener: Evan M. Hill, University of Michigan School of Public Health

Three dimensional organoid constructs are a culmination of decades-long goal of in vitro cell biologists to produce quantities of functional organs for research and regenerative medicine. While the 2D monolayer systems contributed much to our understanding of cells in culture and serve many important areas of research, they also showed us the limitations of working with primary cultures which lack the organ-specific substrate, spatial arrangement, supporting cell types and specific hormone/growth factor milieu. Methods to isolate and expand cultures of tissue-specific stem cells lead to some of the early successful organoid constructs such as skin or intestine where exposure to the air-liquid interface provided an essential stimulus to epithelial differentiation. However there are many tissue types from which stem cell isolation have shown only limited success, and that are difficult to obtain (i.e., central nervous system, lung, and other non-tumor tissues). The world of tissue culture changed radically with the introduction of methods to produce iPSC (induced pluripotent stem cell) cultures from differentiated somatic cells. Creation of iPSCs was based on selectively inducing the expression of four transcription factors in the target cells. Subsequent refinement in the technology has eliminated the need for viral integrations which is a boon for use of these cells in regenerative medicine and interrogation of developmental biology. This symposium will focus on tissue-specific organoid constructs starting with the development of iPSC cells and progressing through the 3D construct and its application to research and potential for use in regenerative medicine.

Plant Biotechnology Post-Doctoral Oral Presentation Competition

Moderator: Carlos H. Garcia, CTC Genomics

To support the Society’s vision to encourage education and scientific informational exchange and recognize outstanding post docs, the Plant Biotechnology Section is pleased to announce the 2021 Post-Doctoral Oral Presentation Competition. Post-Doctoral Candidates wishing to participate in this competition should submit a copy of their abstract with its title and submission ID number to Carlos Hernandez-Garcia ( and check that option when they submit their abstract. Competition finalists will be selected based on the quality of the abstracts. The abstract should address the following: Background, Objectives, Methods, Results, Discussion and Conclusions. Where appropriate, the methods section should include a description of how reproducible results were ensured. The abstract must not include references. The abstract text must not exceed 1800 characters. A panel of judges will evaluate the presentations at the meeting. Criteria for the evaluation include experimental design, data analysis, proper interpretation of the results, originality of the study, technical difficulty, appearance and ability of the post-doctoral candidate to present it. Winners will be presented with a certificate and a cash award at the meeting. Please note that the DEADLINE to submit your abstract for the SIVB Oral Presentation Competition is January 29, 2021.

Plant Biotechnology Student Oral Presentation Competition

Moderator: TBD


12:30 pm – 1:30 pm

Student Networking Luncheon: Machine Learning

Conveners: Evan M. Hill, University of Michigan, and Alperen Ozturk, Nigde Omer Halisdemir University


1:30 pm – 2:30 pm

In Vitro Animal Cell Sciences Student and Post-Doctoral Oral Presentation Competition

Moderators: Kolla Kristjansdottir, Midwestern University, and Addy Alt-Holland, Tufts University



3:30 pm – 5:00 pm

Factors Affecting Successful Transfer of In Vitro Plantlets to Ex Vitro Condition

Convener: Sylvia Mitchell, University of the West Indies

Organoids: Understanding and Developing Human Disease Models

Conveners:  Durga Attili, University of Michigan Medical School, and Michael K. Dame, University of Michigan Medical School

Scott T. Magness, University of North Carolina at Chapel Hill
Joshua C. Snyder, Duke University School of Medicine
Annie Kathuria, Harvard Medical School

Recent Advances and Applications in Single-Cell Technologies

Conveners: J. Pon Samuel, Corteva Agriscience and Yiping Qi, University of Maryland – College Park

A Cis-regulatory Atlas of Maize Single Cells
Bob Schmitz, University of Georgia
Single Nucleus Analysis of Arabidopsis Seeds Reveals New Cell Types and Imprinting Dynamics
Mary Gehring, MIT
Single Cell Processing and Analysis: Sample Preparation, Enrichment, and Engineering of the Minimal Representative Unit of Life
Abraham Lee, University of California-Irvine

The regulation of gene expression ultimately determines the type and function of cells and tissues of higher eukaryotic hierarchical architectural organization with the complexity from the single cells to the whole plant or animal. Due to a lack of technologies, past research often had to rely on measurements in bulk populations of cells within tissues to study gene expression, cell function, and tissue physiology. However, recent advances in single-cell technologies are becoming essential tools to unmask the heterogeneity of cell functions within a tissue. Until recently, most of our scientific knowledge generally stemmed from population data where we consider cells belonging to the same subtype as a single unit where the members that compose the class are, by definition, homogeneous and identical. This concept represents an extreme simplification of reality, which can be attributed both to the necessary simplification required to understand the global picture and also to the lack of past technologies and data analysis techniques that allow more granular investigations. The lack of technologies for studying single cells has had the most significant impact on the analysis of cells that occur as a minimal fraction of the initial population: such as stem cells. Recent advances in single-cell technologies are now allowing the study of single cells or cell types for different phenotypic markers simultaneously. In plants, individual gametophytic cells are reprogramed to produce haploid embryoids that can be doubled to generate di-haploids. This technology has helped plant breeders accelerate improving many of the food crops. In the recent past, the protoplast system enabled the plant biologist to edit to generate new clonal lines of commercial value by domesticating a few underexploited crops. In mammalian systems, these new single-cell technologies are transforming our fundamental understanding of how individual cells play unique roles within the tissue and is heralding many breakthroughs in the area of human health. In this session, we will showcase a few examples of single-cell techniques powering fundamental research on the cell heterogeneity of tissues and the application with the analytical power to create value to the scientific community.

Non-competitive Student Oral Presentations

Moderators: Evan M. Hill, University of Michigan, and Alperen Ozturk, Nigde Omer Halisdemir University


5:00 pm - 6:00 pm

IVACS Contributed Paper Session

Moderator: Mae Ciancio, Midwestern University

Plant Contributed Paper Session I

Moderator: Nagesh Sardesai, Corteva Agriscience

Plant Contributed Paper Session II

Moderator: Maria M. Jenderek, USDA-ARS


8:30 pm - 10:00 pm

Morphogenic Genes Workshop

Conveners: Bill Gordon-Kamm, Corteva Agriscience, and Kan Wang, Iowa State University


Tuesday, June 8


8:00 am – 10:00 am

Epigenetics: Mechanisms and Implications

Conveners:  Raj Deepika Chauhan, Pairwise, and Bradley Ferguson, University of Nevada, Reno

Characterizing Novel BRD4-dependent Nuclear Proteins in the Heart
Matthew Stratton, The Ohio State University
Regulation of Genome Stability by Histone Variants
Yannick Jacob, Yale University

The term epigenetics is used to refer to the heritable changes in gene expression due to epigenetic modifications such as DNA methylation, altered chromatin structure, RNA based mechanisms, altered DNA accessibility and histone modification. Epigenetic change can be caused by a variety of factors especially environmental stimuli in response to stress. In plants and animals, epigenetic mechanisms play a key role in the regulation of the stress response, adaptation, disease, senescence and other processes. It is important to understand the factors and the mechanisms that causes these changes in order to eliminate deleterious effects of epigenetics. Deeper insights and recent advances in understanding mechanisms of epigenetics and its implications in both plants and animals will be presented in this session.


10:30 am - 12:30 pm

DOE and Quality Control in Research and Commercial Micropropagation

Conveners: Randall P. Niedz, USDA-ARS, Jeffrey W. Adelberg, Clemson University, and Uyen P. Cao Chu, Corteva Agriscience

Data Mining Techniques Utilized in Plant Tissue Culture Research
Melekşen Akin, Iğdır University
Process Optimization
Scott Burgmeyer, Creative Solutions Group
The DOE Approach to Experimentation and Quality Control
Randall P. Niedz, US Department of Agriculture

Quality might be considered the overarching principle of in vitro research and commercial plant production. Quality has many definitions that depends on the specific situation and objectives. For research, quality largely means the production of new knowledge through experimentation. The design of experiments (DoE) is a system of principles and methods for conducting experimentation. For commercial plant production, quality encompasses all products, services, systems, and processes that affect a company’s stakeholders. Six Sigma are the principles and methods to improve any process and includes defining and quantifying the problem, and then measuring and analyzing to improve that process. The session will discuss some methods and quantitative tools used for experimentation, quality control, and process improvement that are relevant for in vitro research and commercial plant production.

Modulating the Gut Microbiota: Application of Prebiotics and Probiotics for Human Health

Convener: Kristina Martinez-Guryn, Midwestern University

M. Andrea Azcarate-Peril, University of North Carolina at Chapel Hill

​The gut microbiota has become increasingly appreciated for its role in human health and disease. For example, gut microbes have been implicated in the development of various gastrointestinal and metabolic diseases such as inflammatory bowel diseases, obesity, non-alcoholic fatty liver, and cardiovascular disease. Consequently, extensive efforts have been made to understand the usefulness of probiotics and prebiotics in modulating the gut microbiota to prevent the development of disease and promote health. The goal of this session is to describe the state of pro- and prebiotic research and provide key examples of their effective use in curbing human disease.  

Regulation, Commercialization, and Adoption of Gene Edited Crops

Convener: David D. Songstad, Songstad Consulting


3:30 pm – 5:00 pm

Advances in Cannabis Regeneration Systems and Biotechnology

Conveners: Sadanand A. Dhekney, University of Maryland Eastern Shore, Hemant Lata, University of Mississippi
Student Convener: Tej Man Tamang, Kansas State University


Conveners:  Kolla Kristjansdottir, Midwestern University, and Addy Alt-Holland, Tufts University 

Building Partnerships and Resources to Address Transformation Bottlenecks

Conveners:  Annie Saltarikos, Bayer U. S. – Crop Science, and Joyce Van Eck, Boyce Thompson Institute

Annie Saltarikos, Bayer U. S. – Crop Science
Joyce M. Van Eck, Boyce Thompson Institute

Raj Deepika Chauhan, Pariwise
William Gordon-Kamm, Corteva Agriscience
Javier Narvaez, Cibus US LLC
Nigel J. Taylor, Donald Danforth Plant Science Center
Kan Wang, Iowa State University

Bottlenecks that thwart achieving efficient genetic engineering and gene editing approaches in plants can come at various stages including plant regeneration, transformation, and recovery of quality (low copy number, desirable phenotype) modified lines. With the advent of gene editing technologies, tailor-made genetic modifications to help advance crop improvement can be realized and has resulted in a demand more than ever before for reliable, robust genetic engineering pipelines. Efforts to develop these pipelines are underway by researchers in both the public and private sectors; however, progress is often slowed due to several factors such as access to germplasm, limited funding, and lack of resources that include infrastructure and experienced personnel. The purpose of this session is to explore possibilities for building connections within and between public and private research organizations. Through two presentations that will present overviews of the issues, a panel discussion, and audience participation we intend to establish a foundation that will help us move forward by identifying where the greatest needs are and how we can collaborate as a community to address them.

Wednesday, June 9


8:00 am – 10:00 am

Risk vs Hazard: Current Regulatory Implications for Emerging Technologies

Conveners: Colette Miller, Environmental Protection Agency, Kenneth Kandaras, International Foundation for Ethical Research, Annie Saltarikos, Bayer U. S. – Crop Science, and John W. Harbell, JHarbell Consulting, LLC


10:30 am – 12:30 pm

Novel Plant Transformation Technologies for Gene Editing Without the Integration of Transgene

Conveners: Shubha B. Subbarao, Bayer U.S. – Crop Science, and QingChun Shi, Pairwise

Transgene-free transformation is an appealing strategy to introduce desired genetic change without the integration of unwanted foreign DNA. This is particularly relevant in plant species with economical or agricultural significance. It may save time for downstream procedures such as transgene removal via segregations and the costly screening effort. For clonally propagated plants where segregation-by-crossing is not feasible, integration-free transformation changes only targeted loci while preserving all other desired traits. In the era of gene editing, creation of deletion mutation (e.g. gene knockout) or point mutation (e.g. amino acid alternation by base editing) are often the outcome and these modifications assemble natural genetic exchanges or mutations by conventional breeding approaches. Hence gene edited plants can be arguably not subject to GMO regulation if integration-free transformation is used. This emerging area of research may include not only variants of Agrobacterium-mediated and biolistic transformation method, but novel delivery techniques such as by nanoparticles and ribonucleoproteins for non-integration gene editing. This session hopes to bring to its audience, the recent research progress on integration-free gene editing as well as the scope to implement the technologies in facilitating plant genome engineering. 

Recent Advances in Development of Therapeutics for Emerging Viral Diseases

Conveners: Brad L. Upham, Michigan State University, and Pamela J. Weathers, Worcester Polytechnic Institute
Student Convener: Uddhab Karki, Arkansas State University

Scaling Up Cannabis Production

Convener: Max Jones, University of Guelph
Student Convener: Adrian Monthony, University of Guelph

With the legalization of recreational Cannabis sativa L. in Canada in 2018 and hemp following the passage of the 2019 Farm Bill, Cannabis tissue culture has entered a rapid growth spurt.  These early years have been characterized by growing pains, as research groups establish tissue culture protocols for the growth and maintenance of germplasm and begin looking towards the application of plant biotechnologies in the species.  Researchers looking to establish roots in the field are faced with a multitude of challenges:  Existing literature on the tissue culture of Cannabis is limited;  existing micropropagation protocols are not easily replicated between different cultivars or lab environments; the highly polytypic nature of the cannabis genome has made development of basic growth and multiplication protocols challenging; furthermore the in vitro growth requirements for drug-type and hemp-type Cannabis are divergent. This session will bring together experts from industry and academia, covering both hemp and drug type Cannabis and will provide a forum for them to share their experiences weeding out some of the common problems faced in the early stages of Cannabis tissue culture.  This session will cover the lifecycle of tissue culture from the early struggles maintaining germplasm and selecting the appropriate growth conditions to approaches needed to scale up in vitro Cannabis production.

Share this page